×

Robust PRESB preconditioning of a 3-dimensional space-time finite element method for parabolic problems. (English) Zbl 1541.65096

Summary: We present a recently developed preconditioning of square block matrices (PRESB) to be used within a parallel method to solve linear systems of equations arising from tensor-product discretizations of initial boundary-value problems for parabolic partial differential equations. We consider weak formulations in Bochner-Sobolev spaces and tensor-product finite element approximations for the heat and eddy current equations. The fast diagonalization method is employed to decouple the arising linear system of equations into auxiliary spatial complex-valued linear systems that can be solved concurrently. We prove that the real part of the system matrix is positive definite, which allows us to accelerate the flexible generalized minimal residual method (FGMRES) by the PRESB preconditioner. The action of PRESB on a vector includes two solutions with positive definite matrices. The spectrum of the preconditioned system lies between 1/2 and 1. Finally, we combine the PRESB-FGMRES method with multigrid-CG iterations and illustrate the numerical efficiency and the robustness for spatial discretizations up to 12 millions degrees of freedom.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65F08 Preconditioners for iterative methods

Software:

Eigen; COLAMD; Netgen; symamd
Full Text: DOI

References:

[1] D. N. Arnold, R. S. Falk and R. Winther, Multigrid in H(div) and H(curl), Numer. Math. 85 (2000), no. 2, 197-217. · Zbl 0974.65113
[2] O. Axelsson and D. Lukáš, Preconditioning methods for eddy-current optimally controlled time-harmonic electromagnetic problems, J. Numer. Math. 27 (2019), no. 1, 1-21. · Zbl 1428.65040
[3] O. Axelsson and J. Maubach, A time-space finite element method for nonlinear convection diffusion problems, Numerical Treatment of the Navier-Stokes Equations (Kiel 1989), Notes Numer. Fluid Mech. 30, Friedrich Vieweg, Braunschweig (1990), 6-23. · Zbl 0725.76054
[4] O. Axelsson and J. Maubach, Global space-time finite element methods for time-dependent convection diffusion problems, Advances in Optimization and Numerical Analysis (Oaxaca 1992), Math. Appl. 275, Kluwer Academic, Dordrecht (1994), 165-184. · Zbl 0803.65099
[5] O. Axelsson, M. Neytcheva and B. Ahmad, A comparison of iterative methods to solve complex valued linear algebraic systems, Numer. Algorithms 66 (2014), no. 4, 811-841. · Zbl 1307.65034
[6] T. A. Davis, J. R. Gilbert, S. I. Larimore and E. G. Ng, Algorithm 836: COLAMD, a column approximate minimum degree ordering algorithm, ACM Trans. Math. Software 30 (2004), no. 3, 377-380. · Zbl 1070.65535
[7] Z. Dostál, T. Kozubek, M. Sadowská and V. Vondrák, Scalable Algorithms for Contact Problems, Adv. Mech. Math. 36, Springer, New York, 2016. · Zbl 1383.74002
[8] L. Foltyn, D. Lukáš and I. Peterek, Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions, Appl. Math. 65 (2020), no. 2, 173-190. · Zbl 1538.65327
[9] M. J. Gander, 50 years of time parallel time integration, Multiple Shooting and Time Domain Decomposition Methods, Contrib. Math. Comput. Sci. 9, Springer, Cham (2015), 69-113. · Zbl 1337.65127
[10] M. J. Gander, L. Halpern and F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal. 41 (2003), no. 5, 1643-1681. · Zbl 1085.65077
[11] M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems, SIAM J. Sci. Comput. 38 (2016), no. 4, A2173-A2208. · Zbl 1342.65225
[12] G. Guennebaud and B. Jacob, Eigen v3, http://eigen.tuxfamily.org, 2010.
[13] C. Hofer, U. Langer, M. Neumüller and R. Schneckenleitner, Parallel and robust preconditioning for space-time isogeometric analysis of parabolic evolution problems, SIAM J. Sci. Comput. 41 (2019), no. 3, A1793-A1821. · Zbl 1420.65022
[14] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathematical Society, Providence, 1968. · Zbl 0174.15403
[15] U. Langer and M. Zank, Efficient direct space-time finite element solvers for parabolic initial-boundary value problems in anisotropic Sobolev spaces, SIAM J. Sci. Comput. 43 (2021), no. 4, A2714-A2736. · Zbl 07379634
[16] J.-L. Lions, Y. Maday and G. Turinici, Résolution d’EDP par un schéma en temps “pararéel”, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 7, 661-668. · Zbl 0984.65085
[17] G. Loli, M. Montardini, G. Sangalli and M. Tani, An efficient solver for space-time isogeometric Galerkin methods for parabolic problems, Comput. Math. Appl. 80 (2020), no. 11, 2586-2603. · Zbl 1524.65574
[18] R. E. Lynch, J. R. Rice and D. H. Thomas, Direct solution of partial difference equations by tensor product methods, Numer. Math. 6 (1964), 185-199. · Zbl 0126.12703
[19] J.-C. Nédélec, Mixed finite elements in \(\mathbf{R}}^{3\), Numer. Math. 35 (1980), no. 3, 315-341. · Zbl 0419.65069
[20] M. Neumüller, Space-Time Methods: Fast Solvers and Applications, Monogr. Ser. TU Graz 20, Technische Universität Graz, Graz, 2013.
[21] C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, Lect. Notes Comput. Sci. Eng. 90, Springer, Heidelberg, 2013. · Zbl 1272.65100
[22] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (1993), no. 2, 461-469. · Zbl 0780.65022
[23] J. Schöberl, NETGEN - an advancing front 2d/3d-mesh generator based on abstract rules, Comput. Vis. Sci. 1 (1997), 41-52. · Zbl 0883.68130
[24] B. Smith, P. Bjørstad and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University, Cambridge, 2004.
[25] O. Steinbach, Space-time finite element methods for parabolic problems, Comput. Methods Appl. Math. 15 (2015), no. 4, 551-566. · Zbl 1329.65229
[26] A. Toselli and O. Widlund, Domain Decomposition Methods—Algorithms and Theory, Springer Ser. Comput. Math. 34, Springer, Berlin, 2005. · Zbl 1069.65138
[27] M. Zank, Inf-Sup Stable Space-Time Methods for Time-Dependent Partial Differential Equations, Monogr. Ser. TU Graz 36, Technische Universität Graz, Graz, 2020.
[28] W. Zulehner, Nonstandard norms and robust estimates for saddle point problems, SIAM J. Matrix Anal. Appl. 32 (2011), no. 2, 536-560. · Zbl 1251.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.