×

Quantum signaling in relativistic motion and across acceleration horizons. (English) Zbl 1373.81111

J. Phys. A, Math. Theor. 50, No. 35, Article ID 355401, 27 p. (2017); corrigendum ibid. 53, No. 18, Article ID 189501, 3 p. (2020).
Summary: The quantum channel between two particle detectors provides a prototype framework for the study of wireless quantum communication via relativistic quantum fields. In this article we calculate the classical channel capacity between two Unruh-DeWitt detectors arising from couplings within the perturbative regime. To this end, we identify the detector states which achieve maximal signal strength. We use these results to investigate the impact of relativistic effects on signaling between detectors in inertial and uniformly accelerated motion which communicate via a massless field in Minkowski spacetime.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81T20 Quantum field theory on curved space or space-time backgrounds
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] Bousso R 2016 Universal limit on communication (arXiv:1611.05821 [gr-qc, physics:hep-th, physics:quant-ph])
[2] Lloyd S 2012 The quantum geometric limit (arXiv:1206.6559 [gr-qc, physics:quant-ph])
[3] Kent A 1999 Unconditionally secure bit commitment Phys. Rev. Lett.83 1447-50 · doi:10.1103/PhysRevLett.83.1447
[4] Kent A 2012 Quantum tasks in Minkowski space Class. Quantum Grav.29 224013 · Zbl 1266.83012 · doi:10.1088/0264-9381/29/22/224013
[5] Hayden P and May A 2012 Summoning information in spacetime, or where and when can a qubit be? (arXiv:1210.0913 [gr-qc, physics:hep-th, physics:quant-ph])
[6] Unruh W G 1976 Notes on black-hole evaporation Phys. Rev. D 14 870-92 · doi:10.1103/PhysRevD.14.870
[7] DeWitt B S 1979 Quantum gravity: the new synthesis General Relativity: an Einstein Centenary Survey ed S Hawking and W Israel (Cambridge: Cambridge University Press) p 680 · Zbl 0424.53001
[8] Gibbons G W and Hawking S W 1977 Cosmological event horizons, thermodynamics and particle creation Phys. Rev. D 15 2738-51 · doi:10.1103/PhysRevD.15.2738
[9] Reznik B, Retzker A and Silman J 2005 Violating Bell’s inequalities in vacuum Phys. Rev. A 71 042104 · Zbl 1227.81053 · doi:10.1103/PhysRevA.71.042104
[10] Summers S J and Werner R 1987 Bell’s inequalities and quantum field theory. II. Bell’s inequalities are maximally violated in the vacuum J. Math. Phys.28 2448-56 · Zbl 0648.46067 · doi:10.1063/1.527734
[11] Summers S J and Werner R 1985 The vacuum violates Bell’s inequalities Phys. Lett. A 110 257-9 · doi:10.1016/0375-9601(85)90093-3
[12] Martín-Martínez E and Menicucci N C 2014 Entanglement in curved spacetimes and cosmology Class. Quantum Grav.31 214001 · Zbl 1304.81126 · doi:10.1088/0264-9381/31/21/214001
[13] Steeg G V and Menicucci N C 2009 Entangling power of an expanding universe Phys. Rev. D 79 044027 · doi:10.1103/PhysRevD.79.044027
[14] Salton G, Mann R B and Menicucci N C 2015 Acceleration-assisted entanglement harvesting and rangefinding New J. Phys.17 035001 · Zbl 1452.81039 · doi:10.1088/1367-2630/17/3/035001
[15] Cliche M and Kempf A 2011 Vacuum entanglement enhancement by a weak gravitational field Phys. Rev. D 83 045019 · doi:10.1103/PhysRevD.83.045019
[16] Hotta M 2008 Quantum measurement information as a key to energy extraction from local vacuums Phys. Rev. D 78 045006 · doi:10.1103/PhysRevD.78.045006
[17] Hotta M 2010 Controlled Hawking process by quantum energy teleportation Phys. Rev. D 81 044025 · doi:10.1103/PhysRevD.81.044025
[18] Hotta M, Matsumoto J and Yusa G 2014 Quantum energy teleportation without a limit of distance Phys. Rev. A 89 012311 · doi:10.1103/PhysRevA.89.012311
[19] Verdon-Akzam G, Martín-Martínez E and Kempf A 2016 Asymptotically limitless quantum energy teleportation via qudit probes Phys. Rev. A 93 022308 · doi:10.1103/PhysRevA.93.022308
[20] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information 10th Anniversary edn (Cambridge: Cambridge University Press) · Zbl 1288.81001 · doi:10.1017/CBO9780511976667
[21] Cliche M and Kempf A 2010 Relativistic quantum channel of communication through field quanta Phys. Rev. A 81 012330 · doi:10.1103/PhysRevA.81.012330
[22] Jonsson R H, Martín-Martínez E and Kempf A 2015 Information transmission without energy exchange Phys. Rev. Lett.114 110505 · doi:10.1103/PhysRevLett.114.110505
[23] Jonsson R H 2016 Information travels in massless fields in 1 + 1 dimensions where energy cannot J. Phys. A: Math. Theor.49 445402 · Zbl 1354.83027 · doi:10.1088/1751-8113/49/44/445402
[24] Czapor S R and McLenaghan R G 2007 Hadamard’s problem of diffusion of waves Acta Phys. Pol. B 1 55
[25] Blasco A, Garay L J, Martín-Benito M and Martín-Martínez E 2015 Violation of the strong Huygen’s principle and timelike signals from the early Universe Phys. Rev. Lett.114 141103 · doi:10.1103/PhysRevLett.114.141103
[26] Blasco A, Garay L J, Martín-Benito M and Martín-Martínez E 2016 Timelike information broadcasting in cosmology Phys. Rev. D 93 024055 · doi:10.1103/PhysRevD.93.024055
[27] Simidzija P and Martín-Martínez E 2017 Information carrying capacity of a cosmological constant Phys. Rev. D 95 025002 · doi:10.1103/PhysRevD.95.025002
[28] Jonsson R H 2016 Decoupling of information propagation from energy propagation PhD Thesis University of Waterloo, Waterloo, Ontario
[29] Brown E G, Martín-Martínez E, Menicucci N C and Mann R B 2013 Detectors for probing relativistic quantum physics beyond perturbation theory Phys. Rev. D 87 084062 · doi:10.1103/PhysRevD.87.084062
[30] Jonsson R H, Martín-Martínez E and Kempf A 2014 Quantum signaling in cavity QED Phys. Rev. A 89 022330 · doi:10.1103/PhysRevA.89.022330
[31] Silverman R 1955 On binary channels and their cascades IRE Trans. Inf. Theory1 19-27 · doi:10.1109/TIT.1955.1055138
[32] Berry D W 2005 Qubit channels that achieve capacity with two states Phys. Rev. A 71 032334 · doi:10.1103/PhysRevA.71.032334
[33] Martín-Martínez E 2015 Causality issues of particle detector models in QFT and quantum optics Phys. Rev. D 92 104019 · doi:10.1103/PhysRevD.92.094019
[34] Satz A 2007 Then again, how often does the Unruh-DeWitt detector click if we switch it carefully? Class. Quantum Grav.24 1719-31 · Zbl 1112.83320 · doi:10.1088/0264-9381/24/7/003
[35] Hodgkinson L and Louko J 2012 How often does the Unruh-DeWitt detector click beyond four dimensions? J. Math. Phys.53 082301 · Zbl 1315.81075 · doi:10.1063/1.4739453
[36] Martín-Martínez E and Louko J 2014 Particle detectors and the zero mode of a quantum field Phys. Rev. D 90 024015 · doi:10.1103/PhysRevD.90.024015
[37] Landulfo S and André G 2016 Nonperturbative approach to relativistic quantum communication channels Phys. Rev. D 93 104019 · doi:10.1103/PhysRevD.93.104019
[38] Caves C M and Drummond P D 1994 Quantum limits on bosonic communication rates Rev. Mod. Phys.66 481-537 · doi:10.1103/RevModPhys.66.481
[39] Bradler K, Hayden P and Panangaden P 2012 Quantum communication in rindler spacetime Commun. Math. Phys.312 361-98 · Zbl 1257.83003 · doi:10.1007/s00220-012-1476-1
[40] Downes T G, Ralph T C and Walk N 2013 Quantum communication with an accelerated partner Phys. Rev. A 87 012327 · doi:10.1103/PhysRevA.87.012327
[41] Casals M, Dolan S, Ottewill A C and Wardell B 2013 Self-force and Green function in Schwarzschild spacetime via quasinormal modes and branch cut Phys. Rev. D 88 044022 · doi:10.1103/PhysRevD.88.044022
[42] Yang H, Zhang F, Zimmerman A and Chen Y 2014 Scalar Green function of the Kerr spacetime Phys. Rev. D 89 064014 · doi:10.1103/PhysRevD.89.064014
[43] Jonsson R H, Ried K, Martín-Martínez E and Kempf A Broadcasting qubits through relativistic fields (in preparation) · Zbl 1411.81072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.