×

Stability of \(\theta \)-schemes for partial differential equations with piecewise constant arguments of alternately retarded and advanced type. (English) Zbl 1499.35081

Summary: This paper deals with the analytical and numerical stability of a partial differential equation with piecewise constant arguments of alternately retarded and advanced type. Firstly, the theory of separation of variables in matrix form and the Fourier method are implemented to achieve the sufficient conditions under which the analytic solution is asymptotically stable. Secondly, the discrete equation is obtained by applying the \(\theta \)-schemes to the original continuous equation, the sufficient conditions for the asymptotic stability of numerical solution are also shown when the mesh ratio satisfying certain conditions. Finally, some numerical experiments for verifying the theoretical results are provided.

MSC:

35B35 Stability in context of PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ait Dads, E.; Lhachimi, L., Pseudo almost periodic solutions for equation with piecewise constant argument, J. Math. Anal. Appl., 371, 842-854 (2010) · Zbl 1206.34094 · doi:10.1016/j.jmaa.2010.06.032
[2] Akhmet, M. U.; Yılmaz, E., Impulsive Hopfield-type neural network system with piecewise constant argument, Nonlinear Anal., 11, 2584-2593 (2010) · Zbl 1202.92001 · doi:10.1016/j.nonrwa.2009.09.003
[3] Akhmet, M. U.; Aruğaslan, D.; Yılmaz, E., Stability analysis of recurrent neural networks with piecewise constant argument of generalized type, Neural Netw., 23, 805-811 (2010) · Zbl 1400.34112 · doi:10.1016/j.neunet.2010.05.006
[4] Barreira, L.; Valls, C., Stable invariant manifolds for delay equations with piecewise constant argument, J. Difference Equ. Appl., 24, 148-163 (2018) · Zbl 1395.34078 · doi:10.1080/10236198.2017.1398238
[5] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Clarendon Press: Clarendon Press, Oxford · Zbl 0749.65042
[6] Bereketoglu, H.; Lafci, M., Behavior of the solutions of a partial differential equation with a piecewise constant argument, Filomat, 31, 5931-5943 (2017) · Zbl 1499.35041 · doi:10.2298/FIL1719931B
[7] Bereketoglu, H.; Lafci, M.; Oztepe, G. S., On the oscillation of a third order nonlinear differential equation with piecewise constant arguments, Mediterr. J. Math., 14 (2017) · Zbl 1378.34088 · doi:10.1007/s00009-017-0923-9
[8] Cavalli, F.; Naimzada, A., A multiscale time model with piecewise constant argument for a boundedly rational monopolist, J. Difference Equ. Appl., 22, 1480-1489 (2016) · Zbl 1390.91135 · doi:10.1080/10236198.2016.1202940
[9] Chi, H.; Poorkarimi, H.; Wiener, J.; Shah, S. M., On the exponential growth of solutions to nonlinear hyperbolic equations, Int. J. Math. Math. Sci, 12, 539-545 (1989) · Zbl 0685.35069 · doi:10.1155/S0161171289000670
[10] Cooke, K. L.; Wiener, J., Retarded differential equations with piecewise constant delays, J. Math. Anal. Appl., 99, 265-297 (1984) · Zbl 0557.34059 · doi:10.1016/0022-247X(84)90248-8
[11] Dimbour, W., Almost automorphic solutions for differential equations with piecewise constant argument in a Banach space, Nonlinear Anal., 74, 2351-2357 (2011) · Zbl 1216.34075 · doi:10.1016/j.na.2010.11.038
[12] Gao, J. F., Numerical oscillation and non-oscillation for differential equation with piecewise continuous arguments of mixed type, Appl. Math. Comput., 299, 16-27 (2017) · Zbl 1411.65095
[13] Gurcan, F.; Bozkurt, F., Global stability in a population model with piecewise constant arguments, J. Math. Anal. Appl., 360, 334-342 (2009) · Zbl 1177.34097 · doi:10.1016/j.jmaa.2009.06.058
[14] Gurcan, F.; Kartal, S.; Ozturk, I.; Bozkurt, F., Stability and bifurcation analysis of a mathematical model for tumor-immune interaction with piecewise constant arguments of delay, Chaos Soliton Fractals, 68, 169-179 (2014) · Zbl 1354.92037 · doi:10.1016/j.chaos.2014.08.001
[15] Hale, J. K., Theory of Functional Differential Equations (1977), Springer-Verlag: Springer-Verlag, New York · Zbl 0352.34001
[16] Karakoc, F., Asymptotic behaviour of a population model with piecewise constant argument, Appl. Math. Lett., 70, 7-13 (2017) · Zbl 1372.34128 · doi:10.1016/j.aml.2017.02.014
[17] Kartal, S., Flip and Neimark-Sacker bifurcation in a differential equation with piecewise constant arguments model, J. Difference Equ. Appl., 23, 763-778 (2017) · Zbl 1377.92058 · doi:10.1080/10236198.2016.1277214
[18] Kartal, S.; Gurcan, F., Stability and bifurcations analysis of a competition model with piecewise constant arguments, Math. Methods Appl. Sci., 38, 1855-1866 (2015) · Zbl 1318.34113 · doi:10.1002/mma.3196
[19] Li, C.; Zhang, C. J., Block boundary value methods applied to functional differential equations with piecewise continuous arguments, Appl. Numer. Math., 115, 214-224 (2017) · Zbl 1358.65042 · doi:10.1016/j.apnum.2017.01.012
[20] Liang, H.; Shi, D. Y.; Lv, W. J., Convergence and asymptotic stability of Galerkin methods for a partial differential equation with piecewise constant argument, Appl. Math. Comput., 217, 854-860 (2010) · Zbl 1204.65110
[21] Liang, H.; Liu, M. Z.; Lv, W. J., Stability of θ-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments, Appl. Math. Lett., 23, 198-206 (2010) · Zbl 1209.65091 · doi:10.1016/j.aml.2009.09.012
[22] Liu, M. Z.; Song, M. H.; Yang, Z. W., Stability of Runge-Kutta methods in the numerical solution of equation \(####\), J. Comput. Appl. Math., 166, 361-370 (2004) · Zbl 1052.65070 · doi:10.1016/j.cam.2003.04.002
[23] Liu, M. Z.; Gao, J. F.; Yang, Z. W., Preservation of oscillations of the Runge-Kutta method for equation \(####\), Comput. Math. Appl., 58, 1113-1125 (2009) · Zbl 1189.65143 · doi:10.1016/j.camwa.2009.07.030
[24] Lu, Y. L.; Song, M. H.; Liu, M. Z., Convergence and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments, J. Comput. Appl. Math., 317, 55-71 (2017) · Zbl 1376.60066 · doi:10.1016/j.cam.2016.11.033
[25] Murad, N.M. and Celeste, A., Linear and nonlinear characterization of loading systems under piecewise discontinuous disturbances voltage: Analytical and numerical approaches, Proceedings of International Conference on Power Electronics Systems and Applications, Hong Kong, 2004, pp. 291-297.
[26] Poorkarimi, H. and Wiener, J., Bounded solutions of nonlinear parabolic equations with time delay, Proceedings of the 15th Annual Conference of Applied Mathematics, Edman, USA, 1999, pp. 87-91. · Zbl 0937.35081
[27] Shah, S. M.; Wiener, J., Advanced differential equations with piecewise constant argument deviations, Int. J. Math. Math. Sci., 6, 671-703 (1983) · Zbl 0534.34067 · doi:10.1155/S0161171283000599
[28] Shah, S. M.; Poorkarimi, H.; Wiener, J., Bounded solutions of retarded nonlinear hyperbolic equations, Bull. Allahabad Math. Soc., 1, 1-14 (1986) · Zbl 1195.35295
[29] Shen, W. W.; Zeng, Z. G.; Wen, S. P., Synchronization of complex dynamical network with piecewise constant argument of generalized type, Neurocomputing, 173, 671-675 (2016) · doi:10.1016/j.neucom.2015.08.014
[30] Song, M. H.; Liu, X., The improved linear multistep methods for differential equations with piecewise continuous arguments, Appl. Math. Comput., 217, 4002-4009 (2010) · Zbl 1206.65184
[31] Song, M. H.; Liu, M. Z., Numerical stability and oscillations of the Runge-Kutta methods for the differential equations with piecewise continuous arguments of alternately retarded and advanced type, J. Inequal. Appl., 2012, 290 (2012) · Zbl 1280.65070 · doi:10.1186/1029-242X-2012-290
[32] Veloz, T.; Pinto, M., Existence, computability and stability for solutions of the diffusion equation with general piecewise constant argument, J. Math. Anal. Appl., 426, 330-339 (2015) · Zbl 1515.35115 · doi:10.1016/j.jmaa.2014.10.045
[33] Wang, Q., Stability analysis of parabolic partial differential equations with piecewise continuous arguments, Numer. Methods Partial Differential Equations, 33, 531-545 (2017) · Zbl 1390.65096 · doi:10.1002/num.22113
[34] Wang, W. S.; Li, S. F., Dissipativity of Runge-Kutta methods for neutral delay differential equations with piecewise constant delay, Appl. Math. Lett., 21, 983-991 (2008) · Zbl 1152.65449 · doi:10.1016/j.aml.2007.10.014
[35] Wang, Q.; Wen, J. C., Analytical and numerical stability of partial differential equations with piecewise constant arguments, Numer. Methods Partial Differential Equations, 30, 1-16 (2014) · Zbl 1283.65088 · doi:10.1002/num.21789
[36] Wang, Q.; Zhu, Q. Y., Stability analysis of Runge-Kutta methods for differential equations with piecewise continuous arguments of mixed type, Int. J. Comput. Math., 88, 1052-1066 (2011) · Zbl 1220.65105 · doi:10.1080/00207160.2010.492425
[37] Wang, Q.; Zhu, Q. Y.; Liu, M. Z., Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type, J. Comput. Appl. Math., 235, 1542-1552 (2011) · Zbl 1207.65103 · doi:10.1016/j.cam.2010.08.041
[38] Wiener, J., Differential equations with piecewise constant delays, in Trends in the Theory and Practice of Nonlinear Differential Equations, V. Lakshmikantham, ed., Marcel Dekker, New York, 1983. · Zbl 0531.34059
[39] Wiener, J., Boundary value problems for partial differential equations with piecewise constant delay, Int. J. Math. Math. Sci., 14, 363-379 (1991) · Zbl 0749.35061 · doi:10.1155/S0161171291000431
[40] Wiener, J., Generalized Solutions of Functional Differential Equations (1993), World Scientific: World Scientific, Singapore · Zbl 0874.34054
[41] Wiener, J.; Debnath, L., A wave equation with discontinuous time delay, Int. J. Math. Math. Sci., 15, 781-788 (1992) · Zbl 0766.35024 · doi:10.1155/S0161171292001017
[42] Wiener, J.; Debnath, L., A survey of partial differential equations with piecewise continuous arguments, Int. J. Math. Math. Sci., 18, 209-228 (1995) · Zbl 0821.35140 · doi:10.1155/S0161171295000275
[43] Wiener, J.; Debnath, L., Boundary value problems for the diffusion equation with piecewise continuous time delay, Int. J. Math. Math. Sci., 20, 187-195 (1997) · Zbl 0879.35065 · doi:10.1155/S0161171297000239
[44] Wiener, J.; Heller, W., Oscillatory and periodic solutions to a diffusion equation of neutral type, Int. J. Math. Math. Sci., 22, 313-348 (1999) · Zbl 0935.35006 · doi:10.1155/S0161171299223137
[45] Wiener, J.; Lakshmikantham, V., Complicated dynamics in a delay Klein-Gordon equation, Nonlinear Anal. Ser. B, 38, 75-85 (1999) · Zbl 0944.35105 · doi:10.1016/S0362-546X(99)00097-8
[46] Wu, A. L.; Liu, L.; Huang, T. W.; Zeng, Z. G., Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments, Neural Netw., 85, 118-127 (2017) · Zbl 1432.34102 · doi:10.1016/j.neunet.2016.10.002
[47] Zhang, G. L., Stability of Runge-Kutta methods for linear impulsive delay differential equations with piecewise constant arguments, J. Comput. Appl. Math., 297, 41-50 (2016) · Zbl 1329.65167 · doi:10.1016/j.cam.2015.11.003
[48] Zhou, Y. C.; Yang, Z. W.; Zhang, H. Y.; Wang, Y., Theoretical analysis for blow-up behaviors of differential equations with piecewise constant arguments, Appl. Math. Comput., 274, 353-361 (2016) · Zbl 1410.34184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.