×

Rigorous numerical inclusion of the blow-up time for the Fujita-type equation. (English) Zbl 1505.35055

Summary: Multiple studies have addressed the blow-up time of the Fujita-type equation. However, an explicit and sharp inclusion method that tackles this problem is still missing due to several challenging issues. In this paper, we propose a method for obtaining a computable and mathematically rigorous inclusion of the \(L^2 (\varOmega)\) blow-up time of a solution to the Fujita-type equation subject to initial and Dirichlet boundary conditions using a numerical verification method. More specifically, we develop a computer-assisted method, by using the numerically verified solution for nonlinear parabolic equations and its estimation of the energy functional, which proves that the concerned solution blows up in the \(L^2 (\varOmega)\) sense in finite time with a rigorous estimation of this time. To illustrate how our method actually works, we consider the Fujita-type equation with Dirichlet boundary conditions and the initial function \(u(0,x)=\frac{192}{5}x(x-1)(x^2 -x-1)\) in a one-dimensional domain \(\varOmega\) and demonstrate its efficiency in predicting \(L^2 (\varOmega)\) blow-up time. The existing theory cannot prove that the solution of the equation blows up in \(L^2 (\varOmega)\). However, our proposed method shows that the solution is the \(L^2 (\varOmega)\) blow-up solution and the \(L^2 (\varOmega)\) blow-up time is in the interval \((0.3068, 0.317713]\).

MSC:

35B44 Blow-up in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K58 Semilinear parabolic equations
35K91 Semilinear parabolic equations with Laplacian, bi-Laplacian or poly-Laplacian
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Software:

INTLAB

References:

[1] Ball, JM, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Q. J. Math., 28, 4, 473-486 (1977) · Zbl 0377.35037 · doi:10.1093/qmath/28.4.473
[2] Ceballos-Lira, MJ; Macías-Díaz, JE; Villa, J., A generalization of Osgood’s test and a comparison criterion for integral equations with noise, Electron. J. Diff. Equ., 2011, 5, 1-8 (2011) · Zbl 1206.45005
[3] Hirota, C.; Ozawa, K., Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations-an application to the blow-up problems of partial differential equations, J. Comput. Appl. Math., 193, 2, 614-637 (2006) · Zbl 1101.65095 · doi:10.1016/j.cam.2005.04.069
[4] Cho, CH, A numerical algorithm for blow-up problems revisited, Numer. Algorithms, 75, 675-697 (2017) · Zbl 1376.65113 · doi:10.1007/s11075-016-0216-6
[5] Evans, LC, Partial Differential Equations (2010), Providence: American Mathematical Society, Providence · Zbl 1194.35001
[6] Fujita, H., On the blowing up of solutions of the Cauchy problem for \(u_t-\Delta u=u^{1+\alpha }\), J. Fac. Sci. Univ. Tokyo. Sect. 1, 13, 2, 109-124 (1966) · Zbl 0163.34002
[7] Hashimoto, K.; Kinoshita, T.; Nakao, MT, Numerical verification of solutions for nonlinear parabolic problems, Numer. Funct. Anal. Optim., 41, 12, 1495-1514 (2020) · Zbl 1450.65121 · doi:10.1080/01630563.2020.1777159
[8] Jerison, D.; Kenig, CE, The Inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130, 1, 161-219 (1995) · Zbl 0832.35034 · doi:10.1006/jfan.1995.1067
[9] Kaplan, S., On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math., 16, 3, 305-330 (1963) · Zbl 0156.33503 · doi:10.1002/cpa.3160160307
[10] Kinoshita, T.; Kimura, T.; Nakao, MT, On the a posteriori estimates for inverse operators of linear parabolic equations with applications to the numerical enclosure of solutions for nonlinear problems, Numer. Math., 126, 679-701 (2014) · Zbl 1293.35062 · doi:10.1007/s00211-013-0575-z
[11] Kou, W.; Ding, J., Global existence and blow-up analysis for parabolic equations with nonlocal source and nonlinear boundary conditions, Boundary Value Probl, 2020, 37 (2020) · Zbl 1486.35077 · doi:10.1186/s13661-020-01340-5
[12] Lions, PL, Asymptotic behavior of some nonlinear heat equations, Phys. D, 5, 2, 293-306 (1982) · Zbl 1194.35459 · doi:10.1016/0167-2789(82)90024-0
[13] Liu, X.; Zhang, T., \(H^2\) blowup result for a Schrödinger equation with nonlinear Sorce term, Am. Inst. Math. Sci., 28, 777-794 (2020) · Zbl 1446.35185
[14] Matsue, K.; Takayasu, A., Numerical validation of blow-up solutions with quasi-homogeneous compactifications, Numer. Math., 145, 605-654 (2020) · Zbl 1447.34037 · doi:10.1007/s00211-020-01125-z
[15] Matsue, K.; Takayasu, A., Rigorous numerics of blow-up solutions for odes with exponential nonlinearity, J. Comput. Appl. Math., 374, 112607 (2020) · Zbl 1436.34029 · doi:10.1016/j.cam.2019.112607
[16] Na, Y.; Zhou, M.; Zhou, X.; Gai, G., Blow-up theorems of Fujita type for a semilinear parabolic equation with a gradient term, Adv. Differ. Equ., 2018, 128 (2018) · Zbl 1445.35219 · doi:10.1186/s13662-018-1582-2
[17] Nakagawa, T., Blowing up of a finite difference solution to \(u_t = u_{xx} + u^2\), Appl. Math. Optim., 2, 337-350 (1975) · Zbl 0357.65075 · doi:10.1007/BF01448176
[18] Nakao, MT, Solving nonlinear parabolic problems with result verification. Part i: one-space dimensional case, J. Comput. Appl. Math., 38, 1, 323-334 (1991) · Zbl 0744.65065 · doi:10.1016/0377-0427(91)90179-N
[19] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[20] Quittner, P.; Souplet, P., Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States (2019), Boston: Birkhäuser, Boston · Zbl 1423.35004 · doi:10.1007/978-3-030-18222-9
[21] Adams, RA, Sobolev Spaces (1975), New York: Academic Press, New York · Zbl 0314.46030
[22] Rump, SM; Csendes, T., INTLAB—INTerval LABoratory, Developments in Reliable Computing, pp 77-104 (1999), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0949.65046
[23] Takayasu, A.; Matsue, K.; Sasaki, T.; Tanaka, K.; Mizuguchi, M.; Oishi, S., Numerical validation of blow-up solutions of ordinary differential equations, J. Comput. Appl. Math., 314, 10-29 (2017) · Zbl 1376.34035 · doi:10.1016/j.cam.2016.10.013
[24] Takayasu, A.; Mizuguchi, M.; Kubo, T.; Oishi, S., Accurate method of verified computing for solutions of semilinear heat equations, Reliab. Comput., 25, 74-99 (2017) · Zbl 1362.65106
[25] Tsusumi, M., On solutions of semilinear differential equations in Hilbert space, Math. Jpn., 17, 173-193 (1972) · Zbl 0273.34044
[26] Wang, H.; He, Y., On blow-up of solutions for a semilinear parabolic equation involving variable source and positive initial energy, Appl. Math. Lett., 26, 10, 1008-1012 (2013) · Zbl 1524.35100 · doi:10.1016/j.aml.2013.05.001
[27] Zhang, P., Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system, Adv. Math. (N. Y.), 363, 107007 (2020) · Zbl 1434.35071 · doi:10.1016/j.aim.2020.107007
[28] Zhou, YC; Yang, ZW; Zhang, HY; Wang, Y., Theoretical analysis for blow-up behaviors of differential equations with piecewise constant arguments, Appl. Math. Comput., 274, 353-361 (2016) · Zbl 1410.34184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.