×

Explosive tritrophic food chain models with interference: a comparative study. (English) Zbl 1429.92142

Summary: Depending upon the choice of food, availability of resource and growth structure, food uptake process of higher trophic level species are significantly complicated and gives interesting dynamical impacts on community food chain. The effect of top predator interference on the dynamics of a tritrophic food chain model is the principal goal to study general framework for three species food chain models in which intermediate and top predators are specialist and generalist types respectively where the top predator grows by sexual reproduction. This concept is used to design five different models in this paper by five different combinations of functional responses of specialist intermediate predator (food uptake process follows either prey dependent, Holling type III/IV or prey-predator dependent, Beddington-DeAngelis (BD)-functional response) and sexually reproductive generalist top predator (food uptake follows strictly prey-predator dependent, BD/Crowley-Martin (CM) functional response) respectively assuming the fact that the growth of intermediate predator is mediated by gestation delay. We establish the stability of each equilibrium point of the non-delayed counterpart of each model and investigate the existence of Hopf-bifurcation for the coexistence equilibrium point of all delayed systems. We also show that both the delayed and non-delayed models can blow-up in finite time under sufficient conditions on the initial data. Furthermore, some dynamic behaviors of the systems are clarified by some numerical tests. The numerical simulations show that the gestation delay can act as a damping mechanism and prevent blow-up in certain critical range of gestation period. Ecological implications of this phenomenon are discussed.

MSC:

92D40 Ecology
92D25 Population dynamics (general)
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Wang, X.; Peng, M.; Liu, X., Stability and Hopf bifurcation analysis of a ratio-dependent predatorprey model with two time delays and Holling type III functional response, Appl. Math. Comput., 268, 496-508 (2015) · Zbl 1410.37082
[2] Sahoo, B.; Poria, S., Diseased prey predator model with general Holling type interactions, Appl. Math. Comput., 226, 83-100 (2014) · Zbl 1354.92072
[3] Zhang, S.; Wang, F.; Chen, L., A food chain model with impulsive perturbations and Holling IV functional response, Chaos, Solitons Fractals, 26, 855-866 (2005) · Zbl 1066.92061
[4] Yin, H.; Zhou, J.; Xiao, X.; Wen, X., Analysis of a diffusive Leslie-Gower predator-prey model with nonmonotonic functional response, Chaos Solitons Fractals, 65, 51-61 (2014) · Zbl 1348.92137
[5] Holling, C. S., The functional response of predators to prey density and its role in mimicry and population dynamics, Mem. Entomol. Soc. Can., 97, 45, 5-60 (1965)
[6] Beddington, J. R., Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44, 1, 331-340 (1975)
[7] Crowley, P. H.; Martin, E. K., Functional responses and interference within and between year classes of a dragonfly population, J. North Am. Benthol. Soc., 8, 3, 211-221 (1989)
[8] Hassell, M. P.; Varley, G. C., New inductive population model for insect parasites and its bearing on biological control, Nature, 223, 1133-1137 (1969)
[9] Cui, Q.; Zhang, Q.; Qiu, z.; Hu, Z., Complex dynamics of a discrete-time predator-prey system with Holling IV functional response, Chaos Solitons Fractals, 87, 158-171 (2016) · Zbl 1369.92090
[10] Arditi, R.; Akcakaya, H. R., Variation in plankton densities among lakes: a case for ratio-dependent predation models, Am. Nat., 138, 5, 1287-1296 (1991)
[11] Gutierrez, A. P., Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm, Ecology, 73, 5, 1552-1563 (1992)
[12] Sarwardi, S.; Haque, M.; Mandal, P. K., Persistence and global stability of Bazykin predator-prey model with Beddington-DeAngelis response function, Commun. Nonlinear Sci. Numer. Simul., 19, 1, 189-209 (2014) · Zbl 1344.92145
[13] Tripathi, J. P.; Abbas, S.; Thakur, M., Dynamical analysis of a prey-predator model with Beddington-DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn., 80, 1-20 (2015) · Zbl 1345.92125
[14] Skalski, G. T.; Gilliam, J. F., Functional responses with predator interference: viable alternatives to the Holling type II model, Ecology, 82, 11, 3083-3092 (2011)
[15] Tucker, M. A.; Rogers, T. L., Examining predator prey body size, trophic level and body mass across marine and terrestrial mammals, Proc. R. Soc. B-Biol. Sci., 281, 1797, 20142103 (2014)
[16] Agrawal, R.; Jana, D.; Upadhyay, R. K.; Rao, V. S.H., Dynamic relationship between mutual interference and gestation delay of hybrid tritrophic food chain model, ANZIAM, 59, 3, 370-401 (2018) · Zbl 1431.92120
[17] Upadhyay, R. K.; Chattopadhyay, J., Chaos to order: role of toxin producing phytoplankton in aquatic systems, Nonlinear Anal. Modell. Control, 10, 4, 383-396 (2005) · Zbl 1147.92327
[18] R.K. Upadhyay, S.R.K. Iyengar, V. Rai, Chaos: an ecological reality?Int. J. Bifurc. Chaos, 1998, 8, 1325-1333. · Zbl 0935.92037
[19] Upadhyay, R. K.; Rai, V.; Iyengar, S. R.K., Species extinction problem: genetic vsecological factors, Appl. Math. Modell., 25, 937-951 (2001) · Zbl 0987.92031
[20] Jana, D.; Tripathi, J. P., Impact of generalist type sexually reproductive top predator interference on the dynamics of a food chain model, Int. J. Dyn. Control, 5, 999-1009 (2017)
[21] Parshad, R. D.; Basheer, A.; Jana, D.; Tripathi, J., Do prey handling predators really matter: Subtle effects of a Crowley-Martin functional response, Chaos Solitons Fractals, 103, 410-421 (2017) · Zbl 1375.35039
[22] Jana, D.; Agrawal, R.; Upadhyay, R. K., Dynamics of generalist predator in a stochastic environment: effect of delayed growth and prey refuge, Appl. Math. Comput., 268, 1072-1094 (2015) · Zbl 1410.34136
[23] Jana, D.; Gopal, R.; Lakshmanan, M., Complex dynamics generated by negative and positive feedback delays of a preypredator system with prey refuge: Hopf-bifurcation to chaos, Int. J. Dyn. Control, 5, 4, 1020-1034 (2017)
[24] Chaos, Solitons & Fractals, 71(2015) 22-28 · Zbl 1031.92027
[25] Dorcas, M. E.; Willson, J. D.; Reed, R. N.; Snow, R. W.; Rochford, M. R.; Miller, M. A.; Mehsaka, W. E.; Andreadis, J. P.T.; Mazzotti, F. J.; Romagosa, C. M.; Hart, K. M., Severe mammal declines coincide with proliferation of invasive burmese pythons in everglades national park, Proc. Natl. Acad. Sci., 109, 2418-2422 (2012)
[26] Pimentel, D.; Zuniga, R.; Morrison, D., Update on the environmental and economic costs associated with alien-invasive species in the United States, Ecol. Econ., 52, 3, 273-288 (2005)
[27] Berryman, A., The theory and classification of outbreaks, Insect Outbreaks (1987), Academic Press: Academic Press San Diego, CA
[28] Ludwig, D.; Jones, D.; Holling, C., Qualitative analysis of insect outbreak systems: the spruce Budworm and forest, J. Anim. Ecol., 47, 1, 315-332 (1978)
[29] Driesche, R. V.; Bellows, T., Biological Control (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Massachusetts
[30] Parshad, R. D.; Qansah, E.; Black, K.; Beauregard, M., Biological control via “ecological” damping: an approach that attenuates non-target effects, Math. Biosci., 273, 23-44 (2016) · Zbl 1364.92061
[31] Article ID 424062 · Zbl 1300.92085
[32] Parshad, R. D.; Bhowmick, S.; Quansah, E.; Basheer, A.; Upadhyay, R. K., Predator interference effects on biological control: the paradox of the generalist predator revisited, Commun. Nonlinear Sci. Numer. Simul., 39, 169-184 (2016) · Zbl 1510.92178
[33] Hale, J., Theory of Functional Differential Equations (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0352.34001
[34] Parshad, R. D.; Kumari, N.; Kouachi, S., A remark on “study of a Leslie-gower-type tritrophic population model”, Chaos Solitons Fractals, 71, 22-28 (2015) · Zbl 1352.92130
[35] Aziz-Alaoui, M. A., Study of a Leslie-gower type tri-trophic population model, Chaos Solitons Fractals, 14, 8, 1275-1293 (2002) · Zbl 1031.92027
[36] Zhang, R.; Yang, Z., Uniform blow-up rates and asymptotic estimates of solutions for diffusion systems with weighted localized sources, J. Appl. Math. Comput., 32, 429-441 (2010) · Zbl 1189.35032
[37] Ling, Z.; Wang, Z., Global boundedness and blow-up for a parabolic system with positive Dirichlet boundary value, J. Appl. Math. Comput., 46, 123-134 (2014) · Zbl 1302.35204
[38] Jiang, Y.; Zhang, Y., Exact conditions of blow-up and global existence for the nonlinear wave equation with damping and source terms, Nonlinear Dyn., 76, 1, 139-146 (2014) · Zbl 1319.35114
[39] Zhang, T.; He, Y., Blow-up and global solutions for a class of nonlinear parabolic equations with different kinds of boundary conditions, Appl. Math. Comput., 217, 801-810 (2010) · Zbl 1204.35057
[40] Zhou, Y. C.; Yang, Z. W.; Zhang, H. Y.; Wang, Y., Theoretical analysis for blow-up behaviors of differential equations with piecewise constant arguments, Appl. Math. Comput., 274, 353-361 (2016) · Zbl 1410.34184
[41] Kim, K.; Lin, Z., Blow-up in a three species cooperating model, Appl. Math. Lett., 17, 89-94 (2004) · Zbl 1047.35055
[42] Lou, Y.; Nagylaki, T.; Ni, W., On diffusion induced blowups in a mutualistic model, Nonlinear Anal., 45, 329-342 (2001) · Zbl 0980.35059
[43] Lou, Y.; Munther, D., Dynamics of a three species competition model, Discr. Contin. Dyn. Syst. A, 32, 3099-3131 (2012) · Zbl 1255.35046
[44] Hillen, T.; Painter, K., A users guide to PDE models for chemotaxis, J. Math. Biol., 57, 183-217 (2009) · Zbl 1161.92003
[45] Seebens, H.; Blackburn, T. M.; Dyer, E. E.; Genovesi, P.; Hulme, P. E.; Jeschke, J. M.; Bacher, S., No saturation in the accumulation of alien species worldwide, Nat. Commun., 8, 14435 (2017)
[46] Lewis, M. A.; Petrovskii, S. V.; Potts, J. R., The Mathematics Behind Biological Invasions (2016), Springer · Zbl 1338.92001
[47] Dorcas, M. E.; Willson, J. D.; Reed, R. N.; Snow, R. W.; Rochford, M. R.; Miller, M. A.; Mehsaka, W. E.; Andreadis, P. T.; Mazzotti, F. J.; Romagosa, C. M.; Hart, K. M., Severe mammal declines coincide with proliferation of invasive burmese pythons in everglades national park, Proc. Natl. Acad. Sci., 109, 2418-2422 (2012)
[48] Letnic, M.; Webb, J.; Shine, R., Invasive cane toads (bufo marinus) cause mass mortality of freshwater crocodiles (crocodylus johnstoni) in tropical australia, Biol. Conserv., 141, 1773-1782 (2008)
[49] R.D. Parshad, S. Wickramsooriya, S. Bailey, A remark on “biological control through provision of additional food to predators: A theoretical study” [theoretical population biology, 2007, 72, 111-120, In Revision, Theoretical Population Biology (2019). · Zbl 1516.92125
[50] Lundgren, J. G.; Fergen, J. K., Predator community structure and trophic linkage strength to a focal prey, Mol. Ecol., 23, 15, 3790-3798 (2014)
[51] Sappington, T., Emerging issues in integrated pest management implementation and adoption in the north central USA, Integrated Pest Management, 65-97 (2014), Springer: Springer Dordrecht
[52] Grinn, L.; Hermann, P.; Korotayev, A.; Tausch, A., History & Mathematics: Processes and Models of Global Dynamics (2010), Volgograd ‘Uchitel’ Publishing House
[53] Parshad, R. D.; Quansah, E.; Beauregard, M.; Kouachi, S., On “small” data blow-up in a three species food chain model, Comput. Math. Appl., 73, 2, 576-587 (2017) · Zbl 1376.92048
[54] Appeared online May 3^rd 2017 · Zbl 1382.35137
[55] Rosenheim, J. A.; Kaya, H. K.; Ehler, L. E.; Marois, J. J.; Jaffee, B. A., Intraguild predation among biological-control agents: theory and practice, Biol. Control, 5, 303-335 (1995)
[56] Mazzotti, F. J.; Cherkiss, M. S.; Hart, K. M.; Snow, R. W.; Rochford, M. R.; Dorcas, M. E.; Reed, R. N., Cold-induced mortality of invasive burmese pythons in south orida, Biol. Invas., 13, 1, 143-151 (2011)
[57] Wang, J.; Shi, K.; Huang, Q.; Zhong, S.; Zhang, D., Stochastic switched sampled-data control for synchronization of delayed chaotic neural networks with packet dropout, Appl. Math. Comput., 335, 211-230 (2018) · Zbl 1427.93144
[58] Shi, K.; Tang, Y.; Zhong, S.; Yin, C.; Huang, X.; Wang, W., Nonfragile asynchronous control for uncertain chaotic lurie network systems with bernoulli stochastic process, Int. J. Robust Nonlinear Control, 28, 1693-1714 (2018) · Zbl 1390.93735
[59] Zhang, R.; Liu, X.; Zeng, D.; Zhonga, S.; Shi, K., A novel approach to stability and stabilization of fuzzy sampled-data Markovian chaotic systems, Fuzzy Sets Syst., 344, 108-128 (2018) · Zbl 1397.93229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.