×

Scattering of spinning black holes from exponentiated soft factors. (English) Zbl 1423.83030

Summary: We provide evidence that the classical scattering of two spinning black holes is controlled by the soft expansion of exchanged gravitons. We show how an exponentiation of Cachazo-Strominger soft factors, acting on massive higher-spin amplitudes, can be used to find spin contributions to the aligned-spin scattering angle, conjecturally extending previously known results to higher orders in spin at one-loop order. The extraction of the classical limit is accomplished via the on-shell leading-singularity method and using massive spinor-helicity variables. The three-point amplitude for arbitrary-spin massive particles minimally coupled to gravity is expressed in an exponential form, and in the infinite-spin limit it matches the effective stress-energy tensor of the linearized Kerr solution. A four-point gravitational Compton amplitude is obtained from an extrapolated soft theorem, equivalent to gluing two exponential three-point amplitudes, and becomes itself an exponential operator. The construction uses these amplitudes to: 1) recover the known tree-level scattering angle at all orders in spin, 2) recover the known one-loop linear-in-spin interaction, 3) match a previous conjectural expression for the one-loop scattering angle at quadratic order in spin, 4) propose new one-loop results through quartic order in spin. These connections link the computation of higher-multipole interactions to the study of deeper orders in the soft expansion.

MSC:

83C57 Black holes
81U05 \(2\)-body potential quantum scattering theory
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
[2] S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE]. · doi:10.1103/PhysRev.140.B516
[3] F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev.96 (1954) 1428 [INSPIRE]. · Zbl 0056.44408 · doi:10.1103/PhysRev.96.1428
[4] F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev.110 (1958) 974 [INSPIRE]. · Zbl 0082.42802 · doi:10.1103/PhysRev.110.974
[5] D.J. Gross and R. Jackiw, Low-Energy Theorem for Graviton Scattering, Phys. Rev.166 (1968) 1287 [INSPIRE]. · doi:10.1103/PhysRev.166.1287
[6] R. Jackiw, Low-Energy Theorems for Massless Bosons: Photons and Gravitons, Phys. Rev.168 (1968) 1623 [INSPIRE]. · doi:10.1103/PhysRev.168.1623
[7] C.D. White, Factorization Properties of Soft Graviton Amplitudes, JHEP05 (2011) 060 [arXiv:1103.2981] [INSPIRE]. · Zbl 1296.83030 · doi:10.1007/JHEP05(2011)060
[8] Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-Energy Behavior of Gluons and Gravitons from Gauge Invariance, Phys. Rev.D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].
[9] A. Laddha and A. Sen, Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity, JHEP10 (2017) 065 [arXiv:1706.00759] [INSPIRE]. · Zbl 1383.83033 · doi:10.1007/JHEP10(2017)065
[10] A. Sen, Soft Theorems in Superstring Theory, JHEP06 (2017) 113 [arXiv:1702.03934] [INSPIRE]. · Zbl 1380.83268 · doi:10.1007/JHEP06(2017)113
[11] M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on Soft Theorems: Trees, Loops and Strings, Phys. Rev.D 92 (2015) 065022 [arXiv:1406.5155] [INSPIRE].
[12] Y. Hamada and G. Shiu, Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities, Phys. Rev. Lett.120 (2018) 201601 [arXiv:1801.05528] [INSPIRE]. · doi:10.1103/PhysRevLett.120.201601
[13] Z.-Z. Li, H.-H. Lin and S.-Q. Zhang, Infinite Soft Theorems from Gauge Symmetry, Phys. Rev.D 98 (2018) 045004 [arXiv:1802.03148] [INSPIRE].
[14] A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP07 (2014) 152 [arXiv:1312.2229] [INSPIRE]. · Zbl 1392.81215 · doi:10.1007/JHEP07(2014)152
[15] T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP05 (2015) 151 [arXiv:1401.7026] [INSPIRE]. · Zbl 1388.83261
[16] F. Cachazo and E.Y. Yuan, Are Soft Theorems Renormalized?, arXiv:1405.3413 [INSPIRE].
[17] D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity S-matrix, JHEP08 (2014) 058 [arXiv:1406.3312] [INSPIRE].
[18] T.T. Dumitrescu, T. He, P. Mitra and A. Strominger, Infinite-Dimensional Fermionic Symmetry in Supersymmetric Gauge Theories, arXiv:1511.07429 [INSPIRE].
[19] M. Campiglia and A. Laddha, Subleading soft photons and large gauge transformations, JHEP11 (2016) 012 [arXiv:1605.09677] [INSPIRE]. · Zbl 1390.83138 · doi:10.1007/JHEP11(2016)012
[20] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE]. · Zbl 1408.83003
[21] M. Campiglia and A. Laddha, Asymptotic charges in massless QED revisited: A view from Spatial Infinity, JHEP05 (2019) 207 [arXiv:1810.04619] [INSPIRE]. · Zbl 1416.81210 · doi:10.1007/JHEP05(2019)207
[22] A. Laddha and A. Sen, Gravity Waves from Soft Theorem in General Dimensions, JHEP09 (2018) 105 [arXiv:1801.07719] [INSPIRE]. · Zbl 1398.83023 · doi:10.1007/JHEP09(2018)105
[23] M.J. Duff, Quantum Tree Graphs and the Schwarzschild Solution, Phys. Rev.D 7 (1973) 2317 [INSPIRE].
[24] N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev.D 68 (2003) 084005 [Erratum ibid.D 71 (2005) 069904] [hep-th/0211071] [INSPIRE].
[25] D. Neill and I.Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys.B 877 (2013) 177 [arXiv:1304.7263] [INSPIRE]. · Zbl 1284.83052
[26] N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General Relativity from Scattering Amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].
[27] V. Vaidya, Gravitational spin Hamiltonians from the S matrix, Phys. Rev.D 91 (2015) 024017 [arXiv:1410.5348] [INSPIRE].
[28] B.R. Holstein and A. Ross, Spin Effects in Long Range Gravitational Scattering, arXiv:0802.0716 [INSPIRE].
[29] A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering, JHEP04 (2019) 033 [arXiv:1706.02314] [INSPIRE]. · Zbl 1415.81107 · doi:10.1007/JHEP04(2019)033
[30] B.R. Holstein and A. Ross, Spin Effects in Long Range Electromagnetic Scattering, arXiv:0802.0715 [INSPIRE].
[31] F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE]. · Zbl 1435.83076
[32] J. Vines, Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin and effective-one-body mappings, Class. Quant. Grav.35 (2018) 084002 [arXiv:1709.06016] [INSPIRE]. · Zbl 1409.83116
[33] T. Damour, Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory, Phys. Rev.D 94 (2016) 104015 [arXiv:1609.00354] [INSPIRE].
[34] D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables and Classical Scattering, JHEP02 (2019) 137 [arXiv:1811.10950] [INSPIRE]. · Zbl 1411.81217 · doi:10.1007/JHEP02(2019)137
[35] N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering Amplitudes For All Masses and Spins, arXiv:1709.04891 [INSPIRE]. · Zbl 1521.81418
[36] D. Bini and T. Damour, Gravitational spin-orbit coupling in binary systems, post-Minkowskian approximation and effective one-body theory, Phys. Rev.D 96 (2017) 104038 [arXiv:1709.00590] [INSPIRE].
[37] T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev.D 97 (2018) 044038 [arXiv:1710.10599] [INSPIRE].
[38] D. Bini and T. Damour, Gravitational spin-orbit coupling in binary systems at the second post-Minkowskian approximation, Phys. Rev.D 98 (2018) 044036 [arXiv:1805.10809] [INSPIRE].
[39] C. Cheung, I.Z. Rothstein and M.P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett.121 (2018) 251101 [arXiv:1808.02489] [INSPIRE]. · doi:10.1103/PhysRevLett.121.251101
[40] J. Vines, J. Steinhoff and A. Buonanno, Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order, Phys. Rev.D 99 (2019) 064054 [arXiv:1812.00956] [INSPIRE].
[41] K. Westpfahl, High-Speed Scattering of Charged and Uncharged Particles in General Relativity, Fortsch. Phys.33 (1985) 417. · doi:10.1002/prop.2190330802
[42] D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys.B 388 (1992) 570 [hep-th/9203082] [INSPIRE].
[43] R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, arXiv:1308.5204 [INSPIRE].
[44] W.M. Tulczyjew, Motion of multipole particles in general relativity theory, Acta Phys. Polon.18 (1959) 393. · Zbl 0097.42402
[45] A.D. Fokker, Relativiteitstheorie, P. Noordhoff, Groningen, The Netherlands, (1929). · JFM 55.1163.01
[46] N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP09 (2010) 016 [arXiv:0808.1446] [INSPIRE]. · Zbl 1291.81356 · doi:10.1007/JHEP09(2010)016
[47] B.R. Holstein, Factorization in graviton scattering and the ‘natural’ value of the g-factor, gr-qc/0607058 [INSPIRE].
[48] W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation and the classical double copy, Phys. Rev.D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].
[49] S. Weinberg, Dynamic and Algebraic Symmetries, in Proceedings, 13th Brandeis University Summer Institute in Theoretical Physics, Lectures On Elementary Particles and Quantum Field Theory: Waltham, MA, U.S.A., June 15 - July 24 1970, Cambridge, Mass., U.S.A., pp. 283, Deser, Stanley (ed.), Massachusetts Inst. of Tech. Press, (1970), https://mitpress.mit.edu/index.php?q=books/lectures-elementary-particles-and-quantum-field-theory.
[50] A. Ochirov, Helicity amplitudes for QCD with massive quarks, JHEP04 (2018) 089 [arXiv:1802.06730] [INSPIRE]. · doi:10.1007/JHEP04(2018)089
[51] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys.252 (2004) 189 [hep-th/0312171] [INSPIRE]. · Zbl 1105.81061 · doi:10.1007/s00220-004-1187-3
[52] N.E.J. Bjerrum-Bohr, B.R. Holstein, J.F. Donoghue, L. Planté and P. Vanhove, Illuminating Light Bending, PoS(CORFU2016)077 (2017) [arXiv:1704.01624] [INSPIRE].
[53] J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
[54] N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell Techniques and Universal Results in Quantum Gravity, JHEP02 (2014) 111 [arXiv:1309.0804] [INSPIRE]. · Zbl 1333.83043 · doi:10.1007/JHEP02(2014)111
[55] D. Bini, A. Geralico and J. Vines, Hyperbolic scattering of spinning particles by a Kerr black hole, Phys. Rev.D 96 (2017) 084044 [arXiv:1707.09814] [INSPIRE]. · Zbl 1383.83045
[56] M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order, arXiv:1607.04252 [INSPIRE]. · Zbl 1486.83023
[57] M. Levi and J. Steinhoff, Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme, JCAP01 (2016) 008 [arXiv:1506.05794] [INSPIRE].
[58] N.E.J. Bjerrum-Bohr, D.C. Dunbar, H. Ita, W.B. Perkins and K. Risager, MHV-vertices for gravity amplitudes, JHEP01 (2006) 009 [hep-th/0509016] [INSPIRE]. · doi:10.1088/1126-6708/2006/01/009
[59] L. Rodina, Scattering Amplitudes from Soft Theorems and Infrared Behavior, Phys. Rev. Lett.122 (2019) 071601 [arXiv:1807.09738] [INSPIRE].
[60] H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, Soft Bootstrap and Supersymmetry, JHEP01 (2019) 195 [arXiv:1806.06079] [INSPIRE]. · Zbl 1409.81146 · doi:10.1007/JHEP01(2019)195
[61] R. Carballo-Rubio, F. Di Filippo and N. Moynihan, Taming higher-derivative interactions and bootstrapping gravity with soft theorems, arXiv:1811.08192 [INSPIRE]. · Zbl 1515.83211
[62] S. He, Y.-t. Huang and C. Wen, Loop Corrections to Soft Theorems in Gauge Theories and Gravity, JHEP12 (2014) 115 [arXiv:1405.1410] [INSPIRE]. · doi:10.1007/JHEP12(2014)115
[63] S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett.116 (2016) 231301 [arXiv:1601.00921] [INSPIRE]. · doi:10.1103/PhysRevLett.116.231301
[64] R.F. Penna, Near-horizon Carroll symmetry and black hole Love numbers, arXiv:1812.05643 [INSPIRE].
[65] R.A. Porto, The effective field theorist’s approach to gravitational dynamics, Phys. Rept.633 (2016) 1 [arXiv:1601.04914] [INSPIRE]. · Zbl 1359.83024
[66] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color charges, Phys. Rev.D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].
[67] W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy, Phys. Rev.D 96 (2017) 065009 [arXiv:1705.09263] [INSPIRE].
[68] A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole Scattering from Charged Scalar Amplitudes, JHEP03 (2018) 044 [arXiv:1711.03901] [INSPIRE]. · Zbl 1388.83477 · doi:10.1007/JHEP03(2018)044
[69] C.-H. Shen, Gravitational Radiation from Color-Kinematics Duality, JHEP11 (2018) 162 [arXiv:1806.07388] [INSPIRE]. · Zbl 1404.83022 · doi:10.1007/JHEP11(2018)162
[70] J. Frenkel and J.C. Taylor, Exponentiation of Leading Infrared Divergences in Massless Yang-Mills Theories, Nucl. Phys.B 116 (1976) 185 [INSPIRE].
[71] Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys.B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].
[72] M. Ciafaloni, D. Colferai, F. Coradeschi and G. Veneziano, Unified limiting form of graviton radiation at extreme energies, Phys. Rev.D 93 (2016) 044052 [arXiv:1512.00281] [INSPIRE].
[73] W.D. Goldberger and A. Ross, Gravitational radiative corrections from effective field theory, Phys. Rev.D 81 (2010) 124015 [arXiv:0912.4254] [INSPIRE].
[74] M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive review, arXiv:1807.01699 [INSPIRE].
[75] F.J. Belinfante, On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields, Physica7 (1940) 449. · Zbl 0024.14203
[76] L. Rosenfeld, Sur le tenseur D’Impulsion-Energie, Acad. Roy. Belg. Memoirs de Classes de Science18 (1940) (fasc. 6).
[77] J. Steinhoff, Spin gauge symmetry in the action principle for classical relativistic particles, arXiv:1501.04951 [INSPIRE].
[78] E. Conde, E. Joung and K. Mkrtchyan, Spinor-Helicity Three-Point Amplitudes from Local Cubic Interactions, JHEP08 (2016) 040 [arXiv:1605.07402] [INSPIRE]. · Zbl 1390.83234 · doi:10.1007/JHEP08(2016)040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.