×

Taming higher-derivative interactions and bootstrapping gravity with soft theorems. (English) Zbl 1515.83211

Summary: On-shell constructibility is redefining our understanding of perturbative quantum field theory. The tree-level S-matrix of constructible theories is completely determined by a set of recurrence relations and a reduced number of scattering amplitudes. In this paper, we revisit the on-shell constructibility of gravitational theories making use of new results on soft theorems and recurrence relations. We show that using a double complex shift and an all-line soft deformation allows us to relax the technical conditions for constructibility, in order to include more general propagators and higher-derivative interactions that prevent using conventional Britto-Cachazo-Feng-Witten (BCFW) shifts. From this result we extract a set of criteria that guarantee that a given gravitational action has the same tree-level S-matrix in Minkowski spacetime as general relativity, which implies the equivalence at all orders in perturbation theory between these classical field theories on asymptotically flat spacetimes. As a corollary we deduce that the scattering amplitudes of general relativity and unimodular gravity are the same for an arbitrary number of external particles (as long as the S-matrix of the latter is unitary), thus extending previous works that were able to deal only with \(n=4\) and \(n=5\) amplitudes.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81U20 \(S\)-matrix theory, etc. in quantum theory

References:

[1] P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, [0705.4305]
[2] P. Shuster. and N. Toro, 2009 Constructing the tree-level Yang-Mills S-matrix using complex factorization J. High Energy Phys. JHEP06(2009)079 [0811.3207]
[3] T. Cohen, H. Elvang and M. Kiermaier, 2011 On-shell constructibility of tree amplitudes in general field theories J. High Energy Phys. JHEP04(2011)053 [1010.0257] · Zbl 1250.81072 · doi:10.1007/JHEP04(2011)053
[4] S. He and H.-b. Zhang, 2010 Consistency conditions on S-matrix of spin 1 massless particles J. High Energy Phys. JHEP07(2010)015 [0811.3210] · Zbl 1290.81171 · doi:10.1007/JHEP07(2010)015
[5] C. Cheung, C.-H. Shen and J. Trnka, 2015 Simple recursion relations for general field theories J. High Energy Phys. JHEP06(2015)118 [1502.05057] · Zbl 1388.81257 · doi:10.1007/JHEP06(2015)118
[6] E. van Eijk, R. Kleiss and A. Lazopoulos, 2004 Counting loop diagrams: computational complexity of higher-order amplitude evaluation, https://doi.org/10.1140/epjc/s2004-01958-2 Eur. Phys. J. C 36 459 [hep-ph/0406025] · doi:10.1140/epjc/s2004-01958-2
[7] S.J. Parke and T.R. Taylor, 1986 An amplitude for n gluon scattering, https://doi.org/10.1103/PhysRevLett.56.2459 Phys. Rev. Lett.56 2459 · doi:10.1103/PhysRevLett.56.2459
[8] J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, 2005 A recursion relation for gravity amplitudes, https://doi.org/10.1016/j.nuclphysb.2005.05.016 Nucl. Phys. B 721 98 [hep-th/0502146] · Zbl 1128.81315 · doi:10.1016/j.nuclphysb.2005.05.016
[9] D. Nguyen, M. Spradlin, A. Volovich and C. Wen, 2010 The tree formula for MHV graviton amplitudes J. High Energy Phys. JHEP07(2010)045 [0907.2276] · Zbl 1290.83060 · doi:10.1007/JHEP07(2010)045
[10] J.S.R. Chisholm, 1961 Change of variables in quantum field theories, https://doi.org/10.1016/0029-5582(61)90106-7 Nucl. Phys.26 469 · Zbl 0127.44101 · doi:10.1016/0029-5582(61)90106-7
[11] S. Kamefuchi, L. O’Raifeartaigh and A. Salam, 1961 Change of variables and equivalence theorems in quantum field theories, https://doi.org/10.1016/0029-5582(61)90056-6 Nucl. Phys.28 529 · doi:10.1016/0029-5582(61)90056-6
[12] G. ’t Hooft and M.J.G. Veltman, 1974 Diagrammar NATO Sci. Ser. B 4 177
[13] R.H. Kraichnan, 1947 Quantum theory of the linear gravitational field, B.Sc. thesis, Massachusetts Institute of Technology, Cambridge, U.S.A.
[14] R.H. Kraichnan, 1955 Special-relativistic derivation of generally covariant gravitation theory, https://doi.org/10.1103/PhysRev.98.1118 Phys. Rev.981118 · Zbl 0068.40103 · doi:10.1103/PhysRev.98.1118
[15] S.N. Gupta, 1954 Gravitation and electromagnetism, https://doi.org/10.1103/PhysRev.96.1683 Phys. Rev.961683 · Zbl 0056.44103 · doi:10.1103/PhysRev.96.1683
[16] S.N. Gupta, 1957 Einstein’s and other theories of gravitation, https://doi.org/10.1103/RevModPhys.29.334 Rev. Mod. Phys.29 334 · Zbl 0079.41804 · doi:10.1103/RevModPhys.29.334
[17] R.P. Feynman, 1996 Lectures on gravitation
[18] E.P. Wigner, 1939 On unitary representations of the inhomogeneous Lorentz group, https://doi.org/10.2307/1968551 Annals Math.40 149 · JFM 65.1129.01 · doi:10.2307/1968551
[19] S. Deser, 1970 Selfinteraction and gauge invariance, https://doi.org/10.1007/BF00759198 Gen. Rel. Grav.19 [gr-qc/0411023] · doi:10.1007/BF00759198
[20] E.R. Huggins, 1962 Quantum mechanics of the interaction of gravity with electrons: theory of a spin-two field coupled to energy, Ph.D. thesis, Caltech, U.S.A.
[21] R.M. Wald, 1986 Spin-2 fields and general covariance, https://doi.org/10.1103/PhysRevD.33.3613 Phys. Rev. D 33 3613 · doi:10.1103/PhysRevD.33.3613
[22] C. Cutler and R.M. Wald, 1987 A new type of gauge invariance for a collection of massless spin-2 fields. 1. Existence and uniqueness, https://doi.org/10.1088/0264-9381/4/5/024 Class. Quant. Grav.4 1267 · Zbl 0623.53046 · doi:10.1088/0264-9381/4/5/024
[23] R.M. Wald, 1987 A new type of gauge invariance for a collection of massless spin-2 fields. 2. Geometrical interpretation, https://doi.org/10.1088/0264-9381/4/5/025 Class. Quant. Grav.4 1279 · Zbl 0623.53047 · doi:10.1088/0264-9381/4/5/025
[24] K. Heiderich and W. Unruh, 1988 Spin-2 fields, general covariance and conformal invariance, https://doi.org/10.1103/PhysRevD.38.490 Phys. Rev. D 38 490 · doi:10.1103/PhysRevD.38.490
[25] K.R. Heiderich and W.G. Unruh, 1990 Nonlinear, noncovariant spin two theories, https://doi.org/10.1103/PhysRevD.42.2057 Phys. Rev. D 42 2057 · doi:10.1103/PhysRevD.42.2057
[26] T. Padmanabhan, 2008 From gravitons to gravity: myths and reality, https://doi.org/10.1142/S0218271808012085 Int. J. Mod. Phys. D 17 367 [gr-qc/0409089] · Zbl 1153.83019 · doi:10.1142/S0218271808012085
[27] L.M. Butcher, M. Hobson and A. Lasenby, 2009 Bootstrapping gravity: a consistent approach to energy-momentum self-coupling, https://doi.org/10.1103/PhysRevD.80.084014 Phys. Rev. D 80 084014 [0906.0926] · doi:10.1103/PhysRevD.80.084014
[28] S. Deser, 2010 Gravity from self-interaction redux, https://doi.org/10.1007/s10714-009-0912-9 Gen. Rel. Grav.42 641 [0910.2975] · Zbl 1186.83014 · doi:10.1007/s10714-009-0912-9
[29] C. Barceló, R. Carballo-Rubio and L.J. Garay, 2014 Unimodular gravity and general relativity from graviton self-interactions, https://doi.org/10.1103/PhysRevD.89.124019 Phys. Rev. D 89 124019 [1401.2941] · doi:10.1103/PhysRevD.89.124019
[30] T. Ortin, 2015 Gravity and strings, https://doi.org/10.1017/CBO9781139019750Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridghe U.K. · Zbl 1316.83006 · doi:10.1017/CBO9781139019750
[31] C. Lin and S. Mukohyama, 2017 A class of minimally modified gravity theories J. Cosmol. Astropart. Phys.2017 10 033 [1708.03757] · Zbl 1515.83230
[32] R. Carballo-Rubio, F. Di Filippo and S. Liberati, 2018 Minimally modified theories of gravity: a playground for testing the uniqueness of general relativity J. Cosmol. Astropart. Phys.2018 06 026 [Erratum ibid 1811 (2018) E02] [1802.02537] · Zbl 1527.83080
[33] K. Aoki, A. De Felice, C. Lin, S. Mukohyama and M. Oliosi, 2019 Phenomenology in type-I minimally modified gravity J. Cosmol. Astropart. Phys.2019 01 017 [1810.01047] · Zbl 1542.83033
[34] C. Lin, 2019 The self-consistent matter coupling of a class of minimally modified gravity theories J. Cosmol. Astropart. Phys.2019 05 037 [1811.02467] · Zbl 1481.83085
[35] R. Britto, F. Cachazo and B. Feng, 2005 New recursion relations for tree amplitudes of gluons, https://doi.org/10.1016/j.nuclphysb.2005.02.030 Nucl. Phys. B 715 499 [hep-th/0412308] · Zbl 1207.81088 · doi:10.1016/j.nuclphysb.2005.02.030
[36] R. Britto, F. Cachazo, B. Feng and E. Witten, 2005 Direct proof of tree-level recursion relation in Yang-Mills theory, https://doi.org/10.1103/PhysRevLett.94.181602 Phys. Rev. Lett.94 181602 [hep-th/0501052] · doi:10.1103/PhysRevLett.94.181602
[37] P. Benincasa, C. Boucher-Veronneau and F. Cachazo, 2007 Taming tree amplitudes in general relativity J. High Energy Phys. JHEP11(2007)057 [hep-th/0702032] · Zbl 1245.83012
[38] N. Arkani-Hamed and J. Kaplan, 2008 On tree amplitudes in gauge theory and gravity J. High Energy Phys. JHEP04(2008)076 [0801.2385] · Zbl 1246.81103
[39] C. Cheung et al., 2016 On-shell recursion relations for effective field theories, https://doi.org/10.1103/PhysRevLett.116.041601 Phys. Rev. Lett.116 041601 [1509.03309] · doi:10.1103/PhysRevLett.116.041601
[40] C. Cheung et al., 2017 A periodic table of effective field theories J. High Energy Phys. JHEP02(2017)020 [1611.03137] · Zbl 1377.81123 · doi:10.1007/JHEP02(2017)020
[41] C. Eduardo, Physics from the S-matrix: scattering amplitudes without Lagrangians, PoS(Modave 2013)005
[42] P. Benincasa, 2014 New structures in scattering amplitudes: a review, https://doi.org/10.1142/S0217751X14300051 Int. J. Mod. Phys. A 29 1430005 [1312.5583] · Zbl 1284.81002 · doi:10.1142/S0217751X14300051
[43] H. Elvang, C.R.T. Jones and S.G. Naculich, 2017 Soft photon and graviton theorems in effective field theory, https://doi.org/10.1103/PhysRevLett.118.231601 Phys. Rev. Lett.118 231601 [1611.07534] · doi:10.1103/PhysRevLett.118.231601
[44] A. Laddha and A. Sen, 2017 Sub-subleading soft graviton theorem in generic theories of quantum gravity J. High Energy Phys. JHEP10(2017)065 [1706.00759] · Zbl 1383.83033 · doi:10.1007/JHEP10(2017)065
[45] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, 1966 The analytic S-matrix, Cambridge University Press, Cambridge U.K. · Zbl 0139.46204
[46] S. Weinberg, 1964 Photons and gravitons in S matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, https://doi.org/10.1103/PhysRev.135.B1049 Phys. Rev.135 B1049 · Zbl 0144.23702 · doi:10.1103/PhysRev.135.B1049
[47] F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, [1404.4091]
[48] F. Cachazo, P. Svrček and E. Witten, 2004 MHV vertices and tree amplitudes in gauge theory J. High Energy Phys. JHEP09(2004)006 [hep-th/0403047]
[49] H. Lüo and C. Wen, 2016 Recursion relations from soft theorems J. High Energy Phys. JHEP03(2016)088 [1512.06801] · doi:10.1007/JHEP03(2016)088
[50] H. Elvang and Y.-t. Huang, Scattering amplitudes, [1308.1697]
[51] H. Elvang, M. Hadjiantonis, C.R.T. Jones and S. Paranjape, 2019 Soft bootstrap and supersymmetry J. High Energy Phys. JHEP01(2019)195 [1806.06079] · Zbl 1409.81146 · doi:10.1007/JHEP01(2019)195
[52] N. Arkani-Hamed, F. Cachazo and J. Kaplan, 2010 What is the simplest quantum field theory? J. High Energy Phys. JHEP09(2010)016 [0808.1446] · Zbl 1291.81356 · doi:10.1007/JHEP09(2010)016
[53] M. Spradlin, A. Volovich and C. Wen, 2009 Three applications of a bonus relation for gravity amplitudes, https://doi.org/10.1016/j.physletb.2009.02.059 Phys. Lett. B 674 69 [0812.4767] · doi:10.1016/j.physletb.2009.02.059
[54] L. Rodina, 2019 Scattering amplitudes from soft theorems and infrared behavior, https://doi.org/10.1103/PhysRevLett.122.071601 Phys. Rev. Lett.122 071601 [1807.09738] · doi:10.1103/PhysRevLett.122.071601
[55] E. Alvarez, D. Blas, J. Garriga and E. Verdaguer, 2006 Transverse Fierz-Pauli symmetry, https://doi.org/10.1016/j.nuclphysb.2006.08.003 Nucl. Phys. B 756 148 [hep-th/0606019] · Zbl 1215.83029 · doi:10.1016/j.nuclphysb.2006.08.003
[56] R. Carballo-Rubio, 2015 Longitudinal diffeomorphisms obstruct the protection of vacuum energy, https://doi.org/10.1103/PhysRevD.91.124071 Phys. Rev. D 91 124071 [1502.05278] · doi:10.1103/PhysRevD.91.124071
[57] E. Alvarez, S. Gonzalez-Martin and C.P. Martin, 2016 Unimodular trees versus Einstein trees, https://doi.org/10.1140/epjc/s10052-016-4384-2 Eur. Phys. J. C 76 554 [1605.02667] · doi:10.1140/epjc/s10052-016-4384-2
[58] D.J. Burger, G.F.R. Ellis, J. Murugan and A. Weltman, The KLT relations in unimodular gravity, [1511.08517]
[59] D. Bai and Y.-H. Xing, 2018 Higher derivative theories for interacting massless gravitons in Minkowski spacetime, https://doi.org/10.1016/j.nuclphysb.2018.05.009 Nucl. Phys. B 932 15 [1610.00241] · Zbl 1391.81115 · doi:10.1016/j.nuclphysb.2018.05.009
[60] P. Bueno and P.A. Cano, 2016 Einsteinian cubic gravity, https://doi.org/10.1103/PhysRevD.94.104005 Phys. Rev. D 94 104005 [1607.06463] · doi:10.1103/PhysRevD.94.104005
[61] R.A. Hennigar and R.B. Mann, 2017 Black holes in Einsteinian cubic gravity, https://doi.org/10.1103/PhysRevD.95.064055 Phys. Rev. D 95 064055 [1610.06675] · doi:10.1103/PhysRevD.95.064055
[62] P. Bueno and P.A. Cano, 2016 Four-dimensional black holes in Einsteinian cubic gravity, https://doi.org/10.1103/PhysRevD.94.124051 Phys. Rev. D 94 124051 [1610.08019] · doi:10.1103/PhysRevD.94.124051
[63] J. Beltrán Jiménez, J.A.R. Cembranos and J.M. Sánchez Velázquez, 2018 On scalar and vector fields coupled to the energy-momentum tensor J. High Energy Phys. JHEP05(2018)100 [1803.05832] · Zbl 1391.83094 · doi:10.1007/JHEP05(2018)100
[64] R. Casadio, M. Lenzi and O. Micu, 2018 Bootstrapping Newtonian gravity, https://doi.org/10.1103/PhysRevD.98.104016 Phys. Rev. D 98 104016 [1806.07639] · doi:10.1103/PhysRevD.98.104016
[65] A.A. Tseytlin, 1986 Vector field effective action in the open superstring theory Nucl. Phys. B 276 391 · doi:10.1016/0550-3213(86)90303-2
[66] M. Bianchi, S. He, Y.-t. Huang and C. Wen, 2015 More on soft theorems: trees, loops and strings, https://doi.org/10.1103/PhysRevD.92.065022 Phys. Rev. D 92 065022 [1406.5155] · doi:10.1103/PhysRevD.92.065022
[67] M. Fierz and W. Pauli, 1939 On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, https://doi.org/10.1098/rspa.1939.0140 Proc. Roy. Soc. Lond. A 173 211 · JFM 65.1532.01 · doi:10.1098/rspa.1939.0140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.