×

Unfitted Nitsche’s method for computing band structures of phononic crystals with periodic inclusions. (English) Zbl 1506.78012

Summary: In this paper, we propose an unfitted Nitsche’s method to compute the band structures of phononic crystal with periodic inclusions of general geometry. The proposed method does not require the background mesh to fit the interfaces of periodic inclusions, and thus avoids the expensive cost of generating body-fitted meshes and simplifies the inclusion of interface conditions in the formulation. The quasi-periodic boundary conditions are handled by the Floquet-Bloch transform, which converts the computation of band structures into an eigenvalue problem with periodic boundary conditions. More importantly, we show the well-posedness of the proposed method using a delicate argument based on the trace inequality, and further prove the convergence by the Babuška-Osborn theory. We achieve the optimal convergence rate at the presence of the periodic inclusions of general geometry. We demonstrate the theoretical results by two numerical examples, and show the capability of the proposed methods for computing the band structures without fitting the interfaces of periodic inclusions.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
35P99 Spectral theory and eigenvalue problems for partial differential equations
47A70 (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces
78A48 Composite media; random media in optics and electromagnetic theory

Software:

CutFEM

References:

[1] Economou, E. N.; Sigalas, M., Stop bands for elastic waves in periodic composite materials, J. Acoust. Soc. Am., 95, 1734-1740 (1994)
[2] Ammari, H.; Kang, H.; Lee, H., Asymptotic analysis of high-contrast phononic crystals and a criterion for the band-gap opening, Arch. Ration. Mech. Anal., 193, 679-714 (2009) · Zbl 1170.74023
[3] Sigmund, O.; Jensen, J., Systematic design of phononic band-gap materials and structures by topology optimization, Phil. Trans. R. Soc. A, 361, 1001-1019 (2003) · Zbl 1067.74053
[4] Liu, Y.; Chen, X.; Xu, Y., Topological phononics: From fundamental models to real materials, Adv. Funct. Mater., 30, Article 1904784 pp. (2020)
[5] Kushwaha, M. S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B., Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., 71, 2022-2025 (1993)
[6] Sigalas, M. M.; Soukoulis, C. M., Elastic-wave propagation through disordered and/or absorptive layered systems, Phys. Rev. B, 51, 2780-2789 (1995)
[7] Kafesaki, M.; Economou, E. N., Multiple-scattering theory for three-dimensional periodic acoustic composites, Phys. Rev. B, 60, 11993-12001 (1999)
[8] Cao, Y.; Hou, Z.; Liu, Y., Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals, Solid State Commun., 132, 539-543 (2004)
[9] Zheng, H.; Zhang, C.; Wang, Y.; Sladek, J.; Sladek, V., Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method, Eng. Anal. Bound. Elem., 66, 77-90 (2016) · Zbl 1403.65184
[10] Casadei, F.; Rimoli, J.; Ruzzene, M., Multiscale finite element analysis of wave propagation in periodic solids, Finite Elem. Anal. Des., 108, 81-95 (2016)
[11] Hu, R.; Oskay, C., Spectral variational multiscale model for transient dynamics of phononic crystals and acoustic metamaterials, Comput. Methods Appl. Mech. Engrg., 359, Article 112761 pp. (2020), 26 · Zbl 1441.74093
[12] Li, E.; He, Z. C.; Wang, G.; Liu, G. R., An ultra-accurate numerical method in the design of liquid phononic crystals with hard inclusion, Comput. Mech., 60, 983-996 (2017)
[13] Veres, I. A.; Berer, T.; Matsuda, O., Complex band structures of two dimensional phononic crystals: Analysis by the finite element method, J. Appl. Phys., 114, Article 083519 pp. (2013)
[14] Comi, C.; Marigo, J.-J., Homogenization approach and Bloch-Floquet theory for band-gap prediction in 2D locally resonant metamaterials, J. Elasticity, 139, 61-90 (2020) · Zbl 1433.74091
[15] Ammari, H.; Lee, H.; Zhang, H., Bloch waves in bubbly crystal near the first band gap: a high-frequency homogenization approach, SIAM J. Math. Anal., 51, 45-59 (2019) · Zbl 1408.35220
[16] Ammari, H.; Fitzpatrick, B.; Kang, H.; Ruiz, M.; Yu, S.; Zhang, H., (Mathematical and Computational Methods in Photonics and Phononics. Mathematical and Computational Methods in Photonics and Phononics, Mathematical Surveys and Monographs, vol. 235 (2018), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1420.78001
[17] Li, W.; Chen, W., Simulation of the band structure for scalar waves in 2D phononic crystals by the singular boundary method, Eng. Anal. Bound. Elem., 101, 17-26 (2019) · Zbl 1464.74291
[18] Wang, L.; Zheng, H.; Lu, X.; Shi, L., A Petrov-Galerkin finite element interface method for interface problems with Bloch-periodic boundary conditions and its application in phononic crystals, J. Comput. Phys., 393, 117-138 (2019) · Zbl 1452.82037
[19] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191, 5537-5552 (2002) · Zbl 1035.65125
[20] Hansbo, A.; Hansbo, P., A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Comput. Methods Appl. Mech. Engrg., 193, 3523-3540 (2004) · Zbl 1068.74076
[21] Hansbo, P.; Larson, M. G.; Larsson, K., Cut finite element methods for linear elasticity problems, (Geometrically Unfitted Finite Element Methods and Applications. Geometrically Unfitted Finite Element Methods and Applications, Lect. Notes Comput. Sci. Eng., vol. 121 (2017), Springer: Springer Cham), 25-63 · Zbl 1390.74180
[22] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104, 472-501 (2015) · Zbl 1352.65604
[23] Guo, H.; Yang, X., Gradient recovery for elliptic interface problem: III. Nitsche’s method, J. Comput. Phys., 356, 46-63 (2018) · Zbl 1380.65368
[24] Guo, H.; Yang, X.; Zhu, Y., Unfitted Nitsche’s method for computing wave modes in topological materials (2019), arXiv e-prints, arXiv:1908.06585, https://arxiv.org/abs/1908.06585
[25] Valencia, C.; Gomez, J.; Guarín-Zapata, N., A general-purpose element-based approach to compute dispersion relations in periodic materials with existing finite element codes, J. Theor. Comput. Acoust., 27, Article 1950005 pp. (2019)
[26] Aduloju, S. C.; Truster, T. J., A primal formulation for imposing periodic boundary conditions on conforming and nonconforming meshes, Comput. Methods Appl. Mech. Engrg., 359, Article 112663 pp. (2020), 29 · Zbl 1441.74226
[27] Babuška, I.; Osborn, J. E., Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp., 52, 275-297 (1989) · Zbl 0675.65108
[28] Babuška, I.; Osborn, J. E., Eigenvalue problems, (Handbook of Numerical Analysis, Vol. II (1991), Handb. Numer. Anal. II: Handb. Numer. Anal. II Amsterdam), 641-787 · Zbl 0875.65087
[29] Kittel, C., Introduction to Solid State Physics (2004), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York
[30] Brenner, S. C.; Scott, L. R., (The Mathematical Theory of Finite Element Methods. The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15 (2008), Springer: Springer New York) · Zbl 1135.65042
[31] Ciarlet, P. G., (The Finite Element Method for Elliptic Problems. The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40 (2002), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA), Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)] · Zbl 0999.65129
[32] Evans, L. C., (Partial Differential Equations. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (2010), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1194.35001
[33] Lee-Thorp, J. P.; Weinstein, M. I.; Zhu, Y., Elliptic operators with honeycomb symmetry: Dirac points, edge states and applications to photonic graphene, Arch. Ration. Mech. Anal., 232, 1-63 (2019) · Zbl 1410.78024
[34] Xie, P.; Zhu, Y., Wave packet dynamics in slowly modulated photonic graphene, J. Differential Equations, 267, 5775-5808 (2019) · Zbl 1428.35561
[35] Sticko, S.; Ludvigsson, G.; Kreiss, G., High-order cut finite elements for the elastic wave equation, Adv. Comput. Math., 46, 45 (2020) · Zbl 1437.65144
[36] Burman, E., Ghost penalty, C. R. Math. Acad. Sci. Paris, 348, 1217-1220 (2010) · Zbl 1204.65142
[37] Müller, B.; Kummer, F.; Oberlack, M., Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Internat. J. Numer. Methods Engrg., 96, 512-528 (2013) · Zbl 1352.65083
[38] Juntunen, M.; Stenberg, R., Nitsche’s method for general boundary conditions, Math. Comp., 78, 1353-1374 (2009) · Zbl 1198.65223
[39] Wu, H.; Xiao, Y., An unfitted \(h p\)-interface penalty finite element method for elliptic interface problems, J. Comput. Math., 37, 316-339 (2019) · Zbl 1449.65326
[40] Scott, L. R.; Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54, 483-493 (1990) · Zbl 0696.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.