×

Performance analysis of reduced-dimension subspace signal filtering and detection in sample-starved environment. (English) Zbl 1405.93214

Summary: For multichannel signal filtering or detection in unknown noise, it is usually difficult to obtain sufficient independent and identically distributed (IID) training data in real-world applications, which considerably degrades the performance of adaptive algorithms. In this paper, we consider the problem of subspace signal filtering and detection in sample-starved environment. A simple reduced-dimension approach is adopted, which alleviates the requirement of IID training data. First, the test and training data are projected onto the signal subspace. Then we adopt the criterion of the generalized likelihood ratio test (GLRT) to devise a detector, which can also serve as a filter. The resulting detector can properly work in sample-starved environment, where the number of IID training data is less than the dimension of the test data. Moreover, the devised approach is superior to the existing adaptive subspace processor in filtering and detection, even in some sample-abundant situations. Analytical expressions for the probabilities of detection and false alarm are derived for the proposed approach. Numerical examples are given to verify its effectiveness.

MSC:

93E11 Filtering in stochastic control theory
93E10 Estimation and detection in stochastic control theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Fante, R. L., Adaptive space-time radar, J. Frankl. Inst., 335, 1, 1-11 (1998)
[2] Futernik, A.; Haimovich, A. M., Performance of adaptive radar in range-heterogeneous clutter, J. Frankl. Inst., 335, 1, 71-87 (1998)
[3] Maras, A. M.; Kokkinos, E. A., Space-time threshold detection in non-additive non-Gaussian noise fields, J. Frankl. Inst., 336, 4, 675-686 (1999) · Zbl 0961.94004
[4] Alshebeili, S. A.; Al-Qurainy, A. M.; Al-Ruwais, A. S., Subspace-based approaches for narrowband interference suppression in DS spread spectrum systems, J. Frankl. Inst., 336, 8, 1199-1207 (1999) · Zbl 1041.94541
[5] Du, W.; Fan, Y.; Zhang, Y.; Zhang, J., Fault diagnosis of non-Gaussian process based on FKICA, J. Frankl. Inst., 354, 6, 2573-2590 (2017) · Zbl 1398.93233
[6] Zabalza, J.; Qing, C.; Yuen, P.; Sun, G.; Zhao, H.; Ren, J., Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging, J. Frankl. Inst. (2017)
[7] Kelly, E. J., An adaptive detection algorithm, IEEE Trans. Aerosp. Electron. Syst., 22, 1, 115-127 (1986)
[8] Robey, F. C.; Fuhrmann, D. R.; Kelly, E. J.; Nitzberg, R., A CFAR adaptive matched filter detector, IEEE Trans. Aerosp. Electron. Syst., 28, 1, 208-216 (1992)
[9] De Maio, A., Rao test for adaptive detection in Gaussian interference with unknown covariance matrix, IEEE Trans. Signal Process., 55, 7, 3577-3584 (2007) · Zbl 1391.94506
[10] Orlando, D.; Ricci, G., A Rao test with enhanced selectivity properties in homogeneous scenarios, IEEE Trans. Signal Process., 58, 10, 5385-5390 (2010) · Zbl 1392.94374
[11] Kraut, S.; Scharf, L. L., The CFAR adaptive subspace detector is a scale-invariant GLRT, IEEE Trans. Signal Process., 47, 9, 2538-2541 (1999)
[12] Conte, E.; De Maio, A.; Ricci, G., GLRT-based adaptive detection algorithms for range-spread targets, IEEE Trans. Signal Process., 49, 7, 1336-1348 (2001)
[13] Shuai, X.; Kong, L.; Yang, J., Adaptive detection for distributed targets in Gaussian noise with Rao and Wald tests, Sci. China Inf. Sci., 55, 6, 1290-1300 (2012) · Zbl 1245.94048
[14] Reed, I. S.; Mallett, J. D.; Brennan, L. E., Rapid convergence rate in adaptive arrays, IEEE Trans. Aerosp. Electron. Syst., 10, 6, 853-863 (1974)
[15] Melvin, W. L.; Showman, G. A., An approach to knowledge-aided covariance estimation, IEEE Trans. Aerosp. Electron. Syst., 42, 3, 1021-1041 (2006)
[16] Stoica, P.; Li, J.; Zhu, X.; Guerci, J. R., On using a priori knowledge in space-time adaptive processing, IEEE Trans. Signal Process., 56, 6, 2598-2602 (2008) · Zbl 1390.94424
[17] Wu, Y.; Tang, J.; Peng, Y., On the essence of knowledge-aided clutter covariance estimate and its convergence, IEEE Trans. Aerosp. Electron. Syst., 1, 47, 569-585 (2011)
[18] Haimovich, A. M.; Bar-Ness, Y., An eigenanalysis interference canceler, IEEE Trans. Signal Process., 39, 1, 76-84 (1991)
[19] Goldstein, J. S.; Reed, I. S., Reduced-rank adaptive filtering, IEEE Trans. Signal Process., 2, 45, 492-496 (1997)
[20] Goldstein, J. S.; Reed, I. S.; Scharf, L. L., A multistage representation of the Wiener filter based on orthogonal projections, IEEE Trans. Inf. Theory, 44, 7, 2943-2959 (1998) · Zbl 0938.94004
[21] Pados, D. A.; Karystinos, G. N., An iterative algorithm for the computation of the MVDR filter, IEEE Trans. Signal Process., 2, 49, 290-300 (2001)
[22] Fa, R.; De Lamare, R. C., Reduced-rank STAP algorithms using joint iterative optimization of filters, IEEE Trans. Aerosp. Electron. Syst., 47, 3, 1668-1684 (2011)
[23] Chen, Z.; Li, H.; Rangaswamy, M., Conjugate gradient adaptive matched filter, IEEE Trans. Aerosp. Electron. Syst., 51, 1, 178-191 (2015)
[24] Nitzberg, R., Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive processing, IEEE Trans. Aerosp. Electron. Syst., 16, 1, 124-127 (1980)
[25] Cai, L.; Wang, H., A persymmetric multiband GLR algorithm, IEEE Trans. Aerosp. Electron. Syst., 28, 3, 806-906 (1992)
[26] Casillo, M.; De Maio, A.; Landi, L., A persymmetric GLRT for adaptive detection in partially-homogeneous environment, IEEE Signal Process. Lett., 14, 12, 1016-1019 (2007)
[27] Wang, P.; Sahinoglu, Z.; Pun, M. O.; Li, H. B., Persymmetric parametric adaptive matched filter for multichannel adaptive signal detection, IEEE Trans. Signal Process., 60, 6, 3322-3328 (2012) · Zbl 1393.94625
[28] Gao, Y.; Liao, G.; Zhu, S.; Zhang, X.; Yang, D., Persymmetric adaptive detectors in homogeneous and partially homogeneous environments, IEEE Trans. Signal Process., 62, 2, 331-342 (2014) · Zbl 1394.94738
[29] Hao, C.; Orlando, D.; Foglia, G.; Ma, X.; Yan, S.; Hou, C., Persymmetric adaptive detection of distributed targets in partially-homogeneous environment, Digit. Signal Process., 24, 42-51 (2014)
[30] Hao, C.; Gazor, S.; Foglia, G.; Liu, B., Persymmetric adaptive detection and range estimation of a small target, IEEE Trans. Aerosp. Electron. Syst., 51, 4, 2590-2604 (2015)
[31] Ciuonzo, D.; Orlando, D.; Pallotta, L., On the maximal invariant statistic for adaptive radar detection in partially homogeneous disturbance with persymmetric covariance, IEEE Signal Process. Lett., 23, 12, 1830-1834 (2016)
[32] Wang, Z.; Li, M.; Chen, H.; Lu, Y.; Cao, R.; Zhang, P.; Zuo, L.; Wu, Y., Persymmetric detectors of distributed targets in partially homogeneous disturbance, Signal Process., 128, 382-388 (2016)
[33] Liu, J.; Liu, S.; Liu, W.; Zhou, S.; Zhua, S.; Zhang, Z.-J., Persymmetric adaptive detection of distributed targets in compound-Gaussian sea clutter with Gamma texture, Signal Process., 152, 340-349 (2018)
[34] Klemm, R., Adaptive airborne MTI: an auxiliary channel approach, IEE Proc., 134, 3, 269-276 (1987)
[35] R.C. DiPietro, Extended factored space-time processing for airborne radar systems, in: Proceeding of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, 1992, pp. 425-430.; R.C. DiPietro, Extended factored space-time processing for airborne radar systems, in: Proceeding of the Twenty-Fifth Asilomar Conference on Signals, Systems and Computers, 1992, pp. 425-430.
[36] Wang, H.; Cai, L., On adaptive spatial-temporal processing for airborne surveillance radar systems, IEEE Trans. Aerosp. Electron. Syst., 30, 3, 660-670 (1994)
[37] Wang, Y.-L.; Chen, J.-W.; Bao, Z.; Peng, Y.-N., Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments, IEEE Trans. Aerosp. Electron. Syst., 39, 1, 70-81 (2003)
[38] Brown, R. D.; Schneible, R. A.; Wicks, M. C.; Wang, H.; Zhang, Y., STAP for clutter suppression with sum and difference beams, IEEE Trans. Aerosp. Electron. Syst., 36, 2, 634-646 (2000)
[39] Zhang, W.; He, Z.; Li, J.; Liu, H.; Sun, Y., A method for finding best channels in beam-space post-Doppler reduced-dimension STAP, IEEE Trans. Aerosp. Electron. Syst., 50, 1, 254-264 (2014)
[40] Raghavan, R. S.; Pulsone, N.; McLaughlin, D. J., Performance of the GLRT for adaptive vector subspace detection, IEEE Trans. Aerosp. Electron. Syst., 32, 4, 1473-1487 (1996)
[41] Fabrizio, G. A.; Farina, A.; Turley, M. D., Spatial adaptive subspace detection in OTH radar, IEEE Trans. Aerosp. Electron. Syst., 39, 4, 1407-1428 (2003)
[42] Besson, O.; Scharf, L. L.; Vincent, F., Matched direction detectors and estimators for array processing with subspace steering vector uncertainties, IEEE Trans. Signal Process., 53, 12, 4453-4463 (2005) · Zbl 1370.94307
[43] De Maio, A., Robust adaptive radar detection in the presence of steering vector mismatches, IEEE Trans. Aerosp. Electron. Syst., 41, 4, 1322-1337 (2005)
[44] Liu, J.; Zhou, S.; Liu, W.; Zheng, J.; Liu, H.; Li, J., Tunable adaptive detection in colocated MIMO radar, IEEE Trans. Signal Process., 66, 4, 1080-1092 (2018) · Zbl 1414.94807
[45] Cui, G.; Kong, L.; Yang, X.; Yang, J., Distributed target detection with polarimetric MIMO radar in compound-Gaussian clutter, Digit. Signal Process., 22, 3, 430-438 (2012)
[46] Scharf, L. L.; Friedlander, B., Matched subspace detectors, IEEE Trans. Signal Process., 42, 8, 2146-2156 (1994)
[47] De Maio, A.; Ricci, G., A polarimetric adaptive matched filter, Signal Process., 81, 12, 2583-2589 (2001) · Zbl 0987.94505
[48] Kraut, S.; Scharf, L. L., Adaptive subspace detectors, IEEE Trans. Signal Process., 49, 1, 1-16 (2001)
[49] Liu, W.; Xie, W.; Liu, J.; Wang, Y., Adaptive double subspace signal detection in Gaussian background-part I: homogeneous environments, IEEE Trans. Signal Process., 62, 9, 2345-2357 (2014) · Zbl 1394.94760
[50] Lei, S.; Zhao, Z.; Nie, Z.; Liu, Q.-H., A CFAR adaptive subspace detector based on a single observation in system-dependent clutter background, IEEE Trans. Signal Process., 62, 20, 5260-5269 (2014) · Zbl 1394.94755
[51] Liu, W.; Xie, W.; Liu, J.; Wang, Y., Adaptive double subspace signal detection in Gaussian background-part II: partially homogeneous environments, IEEE Trans. Signal Process., 62, 9, 2358-2369 (2014) · Zbl 1394.94761
[52] Atitallah, I. B.; Kammoun, A.; Alouini, M. S.; Al-Naffouri, T. Y., Optimal design of large dimensional adaptive subspace detectors, IEEE Trans. Signal Process., 64, 19, 4922-4935 (2016) · Zbl 1414.94766
[53] Aubry, A.; Carotenuto, V.; De Maio, A.; Orlando, D., Coincidence of maximal invariants for two adaptive radar detection problems, IEEE Signal Process. Lett., 23, 9, 1193-1196 (2016)
[54] Ciuonzo, D.; De Maio, A.; Orlando, D., A unifying framework for adaptive radar detection in homogeneous plus structured interference—part II: detectors design, IEEE Trans. Signal Process., 64, 11, 2907-2919 (2016) · Zbl 1414.94781
[55] De Maio, A.; Orlando, D., Adaptive radar detection of a subspace signal embedded in subspace structured plus Gaussian interference via invariance, IEEE Trans. Signal Process., 64, 8, 2156-2167 (2016) · Zbl 1414.94784
[56] Wang, Z.; Li, M.; Chen, H.; Zuo, L.; Zhang, P.; Wu, Y., Adaptive detection of a subspace signal in signal-dependent interference, IEEE Trans. Signal Process., 65, 18, 4812-4820 (2017) · Zbl 1414.94827
[57] Pastina, D.; Lombardo, P.; Bucciarelli, T., Adaptive polarimetric target detection with coherent radar part I: detection against Gaussian background, IEEE Trans. Aerosp. Electron. Syst., 37, 4, 1194-1206 (2001)
[58] Liu, J.; Zhang, Z.-J.; Yang, Y., Optimal waveform design for generalized likelihood ratio and adaptive matched filter detectors using a diversely polarized antenna, Signal Process., 92, 4, 1126-1131 (2012)
[59] Muirhead, R. J., Aspects of Multivariate Statistical Theory (2005), Wiley: Wiley Hoboken
[60] Kelly, E. J.; Forsythe, K. M., Adaptive Detection and Parameter Estimation for Multidimensional Signal Models, Technical Report (1989), Lincoln Laboratory, Lexington
[61] Raghavan, R. S.; Qiu, H. F.; Mclaughlin, D. J., CFAR detection in clutter with unknown correlation properties, IEEE Trans. Aerosp. Electron. Syst., 31, 2, 647-657 (1995)
[62] Ward, J., Space-Time Adaptive Processing for Airborne Radar, Technical Report (1994), MIT Lincoln Laboratory, Lexington
[63] Richmond, C. D., Performance of a class of adaptive detection algorithms in nonhomogeneous environments, IEEE Trans. Signal Process., 48, 5, 1248-1263 (2000)
[64] Richmond, C. D., Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments, IEEE Trans. Signal Process., 48, 5, 1235-1247 (2000)
[65] Rabideau, D. J.; Steinhardt, A. O., Improved adaptive clutter cancellation through data-adaptive training, IEEE Trans. Aerosp. Electron. Syst., 35, 3, 879-891 (1999)
[66] Van Trees, H. L., Detection, Estimation, and Modulation Theory, Part IV: Optimum Array Processing (2002), Wiley: Wiley New York
[67] Anderson, T. W., An Introduction to Multivariate Statistical Analysis (2003), Wiley: Wiley Hoboken · Zbl 1039.62044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.