×

Wideband MIMO radar transmit beampattern synthesis via majorization-minimization. (English) Zbl 1509.94019

Summary: We consider the design of constant-modulus waveforms for wideband multiple-input multiple-output radar. The aim is to match a desired transmit beampattern. To tackle the non-convex design problem, we develop an iterative algorithm, which is based on cyclic optimization and majorization-minimization. We prove that the sequence of the objective values of the proposed algorithm has guaranteed convergence. Moreover, we can obtain closed-form solutions for the associated optimization problems at every iteration. Furthermore, the proposed method can be implemented without matrix inversion and hence is computationally efficient. Simulation results demonstrate that the performance of the proposed algorithm is better than existing methods.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Ahmed, S.; Alouini, M., MIMO radar transmit beampattern design without synthesising the covariance matrix, IEEE Trans. Signal Process., 62, 9, 2278-2289 (2014) · Zbl 1394.94031 · doi:10.1109/TSP.2014.2310435
[2] Aldayel, O.; Monga, V.; Rangaswamy, M., Tractable transmit MIMO beampattern design under a constant modulus constraint, IEEE Trans. Signal Process., 65, 10, 2588-2599 (2017) · Zbl 1414.94032 · doi:10.1109/TSP.2017.2664040
[3] Alhujaili, K.; Monga, V.; Rangaswamy, M., Transmit MIMO radar beampattern design via optimization on the complex circle manifold, IEEE Trans. Signal Process., 67, 13, 3561-3575 (2019) · Zbl 07123308 · doi:10.1109/TSP.2019.2914884
[4] Aubry, A.; Carotenuto, V.; De Maio, A.; Farina, A.; Pallotta, L., Optimization theory-based radar waveform design for spectrally dense environments, IEEE Aerosp. Electr. Syst. Mag., 31, 12, 14-25 (2016) · doi:10.1109/MAES.2016.150216
[5] Aubry, A.; De Maio, A.; Zappone, A.; Razaviyayn, M.; Luo, Z., A new sequential optimization procedure and its applications to resource allocation for wireless systems, IEEE Trans. Signal Process., 66, 24, 6518-6533 (2018) · Zbl 1414.90072 · doi:10.1109/TSP.2018.2868265
[6] Aubry, A.; Lops, M.; Tulino, AM; Venturino, L., On MIMO detection under non-gaussian target scattering, IEEE Trans Inf Theory, 56, 11, 5822-5838 (2010) · Zbl 1366.94139 · doi:10.1109/TIT.2010.2068930
[7] Aubry, A.; Maio, AD; Govoni, MA; Martino, L., On the design of multi-spectrally constrained constant modulus radar signals, IEEE Trans Signal Process, 68, 2231-2243 (2020) · Zbl 07590889 · doi:10.1109/TSP.2020.2983642
[8] Aubry, A.; Maio, AD; Huang, Y., MIMO radar beampattern design via PSL/ISL optimization, IEEE Trans Signal Process, 64, 15, 3955-3967 (2016) · Zbl 1414.94041 · doi:10.1109/TSP.2016.2543207
[9] Carotenuto, V.; Aubry, A.; Maio, AD; Pasquino, N.; Farina, A., Assessing agile spectrum management for cognitive radar on measured data, IEEE Aerosp. Electr. Syst. Mag., 35, 6, 20-32 (2020) · doi:10.1109/MAES.2019.2960904
[10] Cheng, Z.; He, Z.; Zhang, S.; Li, J., Constant modulus waveform design for MIMO radar transmit beampattern, IEEE Trans. Signal Process., 65, 18, 4912-4923 (2017) · Zbl 1414.94118 · doi:10.1109/TSP.2017.2718976
[11] Cui, G.; Kong, L.; Yang, X., Performance analysis of colocated MIMO radars with randomly distributed arrays in compound-Gaussian clutter, Circuits Syst. Signal Process., 31, 4, 1407-1422 (2012) · doi:10.1007/s00034-011-9381-y
[12] Cui, G.; Li, H.; Rangaswamy, M., MIMO radar waveform design with constant modulus and similarity constraints, IEEE Trans. Signal Process., 62, 2, 343-353 (2014) · Zbl 1394.94732 · doi:10.1109/TSP.2013.2288086
[13] Cui, G.; Yu, X.; Carotenuto, V.; Kong, L., Space-time transmit code and receive filter design for colocated MIMO radar, IEEE Trans. Signal Process., 65, 5, 1116-1129 (2017) · Zbl 1414.94149 · doi:10.1109/TSP.2016.2633242
[14] G. Cui, X. Yu, M. Piezzo, L. Kong, Constant modulus sequence set design with good correlation properties. Signal Processing 139(Supplement C), 75-85 (2017)
[15] De Maio, A.; Lops, M., Design principles of MIMO radar detectors, IEEE Trans. Aerosp. Electr. Syst., 43, 3, 886-898 (2007) · doi:10.1109/TAES.2007.4383581
[16] De Maio, A.; Lops, M.; Venturino, L., Diversity-integration tradeoffs in MIMO detection, IEEE Trans. Signal Process., 56, 10, 5051-5061 (2008) · Zbl 1390.94547 · doi:10.1109/TSP.2008.928693
[17] D.R Fuhrmann, G. San Antonio, Transmit beamforming for MIMO radar systems using partial signal correlation. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004., vol. 1, pp. 295-299 Vol.1 (2004). 10.1109/ACSSC.2004.1399140
[18] He, H.; Stoica, P.; Li, J., Designing unimodular sequence sets with good correlations-including an application to MIMO radar, IEEE Trans. Signal Process., 57, 11, 4391-4405 (2009) · Zbl 1392.94907 · doi:10.1109/TSP.2009.2025108
[19] He, H.; Stoica, P.; Li, J., Wideband MIMO systems: Signal design for transmit beampattern synthesis, IEEE Trans. Signal Process., 59, 2, 618-628 (2011) · Zbl 1392.94816 · doi:10.1109/TSP.2010.2091410
[20] Hunter, DR; Lange, K., A tutorial on MM algorithms, Am. Stat., 58, 1, 30-37 (2004) · doi:10.1198/0003130042836
[21] Karbasi, SM; Aubry, A.; Carotenuto, V.; Naghsh, MM; Bastani, MH, Knowledge-based design of space time transmit code and receive filter for a multiple-input-multiple-output radar in signal-dependent interference, IET Radar Sonar Nav., 9, 8, 1124-1135 (2015) · doi:10.1049/iet-rsn.2014.0527
[22] Li, J.; Stoica, P., MIMO radar with colocated antennas : Review of some recent work, IEEE Signal Process. Mag., 24, 5, 106-114 (2008) · doi:10.1109/MSP.2007.904812
[23] Li, J.; Stoica, P., MIMO Radar Signal Processing (2009), Hoboken, NJ: Wiley, Hoboken, NJ
[24] Li, J.; Zhang, X., Unitary subspace-based method for angle estimation in bistatic MIMO radar, Circuits Syst. Signal Process., 33, 2, 501-513 (2014) · doi:10.1007/s00034-013-9653-9
[25] Li, N.; Cui, G.; Kong, L.; Yang, X., MIMO radar moving target detection against compound-Gaussian clutter, Circuits Syst. Signal Process., 33, 6, 1819-1839 (2014) · doi:10.1007/s00034-013-9718-9
[26] Lipor, J.; Ahmed, S.; Alouini, M., Fourier-based transmit beampattern design using MIMO radar, IEEE Trans. Signal Process., 62, 9, 2226-2235 (2014) · Zbl 1394.94019 · doi:10.1109/TSP.2014.2307838
[27] Liu, J.; Zhou, S.; Liu, W.; Zheng, J.; Liu, H.; Li, J., Tunable adaptive detection in colocated MIMO radar, IEEE Trans. Signal Process., 66, 4, 1080-1092 (2018) · Zbl 1414.94807 · doi:10.1109/TSP.2017.2778693
[28] Z.Q. Luo, W.k. Ma, A. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems. IEEE Signal Proces. Mag. 27(4), 20 - 34 (2010). 10.1109/MSP.2010.936019
[29] Razaviyayn, M.; Hong, M.; Luo, ZQ, A unified convergence analysis of block successive minimization methods for nonsmooth optimization, SIAM J. Optim., 23, 2, 1126-1153 (2012) · Zbl 1273.90123 · doi:10.1137/120891009
[30] G. San Antonio, D.R. Fuhrmann, Beampattern synthesis for wideband MIMO radar systems. In: 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, pp. 105-108. IEEE (2005)
[31] Shi, C.; Wang, F.; Sellathurai, M.; Zhou, J., Low probability of intercept-based distributed MIMO radar waveform design against barrage jamming in signal-dependent clutter and coloured noise, IET Signal Process., 13, 4, 415-423 (2019) · doi:10.1049/iet-spr.2018.5212
[32] Song, J.; Babu, P.; Palomar, DP, Optimization methods for designing sequences with low autocorrelation sidelobes, IEEE Trans. Signal Process., 63, 15, 3998-4009 (2015) · Zbl 1394.94923 · doi:10.1109/TSP.2015.2425808
[33] Song, J.; Babu, P.; Palomar, DP, Sequence set design with good correlation properties via majorization-minimization, IEEE Trans. Signal Process., 64, 11, 2866-2879 (2016) · Zbl 1414.94904 · doi:10.1109/TSP.2016.2535312
[34] Stoica, P.; Li, J.; Xie, Y., On probing signal design for MIMO radar, IEEE Trans. Signal Process., 55, 8, 4151-4161 (2007) · Zbl 1390.94422 · doi:10.1109/TSP.2007.894398
[35] Stoica, P.; Li, J.; Zhu, X., Waveform synthesis for diversity-based transmit beampattern design, IEEE Trans. Signal Process., 56, 6, 2593-2598 (2008) · Zbl 1390.94423 · doi:10.1109/TSP.2007.916139
[36] Stoica, P.; Selen, Y., Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher, IEEE Signal Process. Mag., 21, 1, 112-114 (2004) · doi:10.1109/MSP.2004.1267055
[37] Tang, B.; Li, J., Spectrally constrained MIMO radar waveform design based on mutual information, IEEE Trans. Signal Process., 67, 3, 821-834 (2019) · Zbl 1415.94249 · doi:10.1109/TSP.2018.2887186
[38] Tang, B.; Liang, J., Efficient algorithms for synthesizing probing waveforms with desired spectral shapes, IEEE Trans. Aerosp. Electr. Syst., 55, 3, 1174-1189 (2019) · doi:10.1109/TAES.2018.2876585
[39] Tang, B.; Naghsh, MM; Tang, J., Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference, IEEE Trans. Signal Process., 63, 14, 3783-3796 (2015) · Zbl 1394.94584 · doi:10.1109/TSP.2015.2423257
[40] Tang, B.; Stoica, P., Information-theoretic waveform design for MIMO radar detection in range-spread clutter, Signal Process., 182, 107961 (2021) · doi:10.1016/j.sigpro.2020.107961
[41] Tang, B.; Tang, J., Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing, IEEE Trans. Signal Process., 64, 18, 4707-4722 (2016) · Zbl 1414.94603 · doi:10.1109/TSP.2016.2569431
[42] Tang, B.; Tang, J.; Peng, Y., MIMO radar waveform design in colored noise based on information theory, IEEE Trans. Signal Process., 58, 9, 4684-4697 (2010) · Zbl 1392.94481 · doi:10.1109/TSP.2010.2050885
[43] Tang, B.; Tang, J.; Zhang, Y.; Zheng, Z., Maximum likelihood estimation of DOD and DOA for bistatic MIMO radar, Signal Process., 93, 5, 1349-1357 (2013) · doi:10.1016/j.sigpro.2012.11.011
[44] Tang, B.; Tuck, J.; Stoica, P., Polyphase waveform design for MIMO radar space time adaptive processing, IEEE Trans. Signal Process., 68, 2143-2154 (2020) · Zbl 07590883 · doi:10.1109/TSP.2020.2983833
[45] Varadhan, R.; Roland, C., Simple and globally convergent methods for accelerating the convergence of any EM algorithm, Scand. J. Stat., 35, 2, 335-353 (2008) · Zbl 1164.65006 · doi:10.1111/j.1467-9469.2007.00585.x
[46] Yang, J.; Qiu, Z.; Jiang, W.; Li, X., Poly-phase codes optimisation for multi-input-multiout-put radars, IET Signal Process., 7, 2, 93-100 (2013) · doi:10.1049/iet-spr.2012.0195
[47] Yu, G.; Liang, J.; Li, J.; Tang, B., Sequence set design with accurately controlled correlation properties, IEEE Trans. Aerosp. Electr. Syst., 54, 6, 3032-3046 (2018) · doi:10.1109/TAES.2018.2836778
[48] Yu, X.; Cui, G.; Yang, J.; Kong, L.; Li, J., Wideband MIMO radar waveform design, IEEE Trans. Signal Process, 67, 13, 3487-3501 (2019) · Zbl 1535.94031 · doi:10.1109/TSP.2019.2916732
[49] Yu, X.; Cui, G.; Zhang, T.; Kong, L., Constrained transmit beampattern design for colocated MIMO radar, Signal Process., 144, 145-154 (2018) · doi:10.1016/j.sigpro.2017.10.010
[50] X. Yu, J. Yang, G. Cui, L. Kong, Constant modulus waveform design for wideband MIMO radar beampattern. In: 2019 IEEE Radar Conference (RadarConf), pp 1-5 (2019). 10.1109/RADAR.2019.8835675
[51] Zheng, G.; Zhang, D., BOMP-based angle estimation with polarimetric MIMO radar with spatially spread crossed-dipole, IET Signal Process., 12, 1, 113-118 (2018) · doi:10.1049/iet-spr.2017.0018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.