×

Implicit-Euler based digital implementation for constrained stabilization of second-order systems. (English) Zbl 1525.93308

Summary: In this article, an implicit Euler algorithm for digital implementation of constrained stabilization is studied for the second-order systems. For that, a switching controller is designed in a discrete-time framework such that the system’s position output converges to some predefined range, that is, \(\varrho\in(-\varepsilon,\varepsilon)\) in finite-time while the velocity output converges to the origin, that is, \(\dot{\varrho}=0\), in finite-time. The switching controller is switched to the implicit Euler implementation of twisting algorithm when \(\varrho\not\in(-\varepsilon,\varepsilon)\) and to an implicit Euler implementation of first-order sliding mode control when \(\varrho\in(-\varepsilon,\varepsilon)\). The combination of the two implicit Euler implementations achieves discrete-time constrained stabilization of second-order systems, avoiding the chattering caused by conventional explicit integration schemes. The usefulness of the proposed algorithm for constrained stabilization is illustrated by considering the container-slosh coupled dynamical system.
{© 2021 John Wiley & Sons Ltd.}

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C62 Digital control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] KhanI, AndersonK. Performance investigation and constraint stabilization approach for the orthogonal complement‐based divide‐and‐conquer algorithm. Mech Mach Theory. 2013;67:111‐121. https://doi.org/10.1016/j.mechmachtheory.2013.04.009. · doi:10.1016/j.mechmachtheory.2013.04.009
[2] KaspirovichIE. Application of constraint stabilization to nonholonomic mechanics. Paper presented at the Russian Federation: Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). Chelyabinsk; 2016:1‐4
[3] GoyalJK, KamalS, PatelRB, YuX, MishraJP, GhoshS. Higher order sliding mode control‐based finite‐time constrained stabilization. IEEE Trans Circuits Syst II Express Briefs. 2020;67(2):295‐299. https://doi.org/10.1109/TCSII.2019.2903495. · doi:10.1109/TCSII.2019.2903495
[4] LiuY, ZengQ, TongS, ChenCLP, LiuL. Adaptive neural network control for active suspension systems with time‐varying vertical displacement and speed constraints. IEEE Trans Ind Electron. 2019;66(12):9458‐9466. https://doi.org/10.1109/TIE.2019.2893847. · doi:10.1109/TIE.2019.2893847
[5] LiuL, LiX, LiuYJ, TongS. Neural network based adaptive event trigger control for a class of electromagnetic suspension systems. Control Eng Pract. 2021;106:104675. https://doi.org/10.1016/j.conengprac.2020.104675. · doi:10.1016/j.conengprac.2020.104675
[6] LiD, LiD. Adaptive neural tracking control for an uncertain state constrained robotic manipulator with unknown time‐varying delays. IEEE Trans Syst Man Cybern Syst. 2018;48(12):2219‐2228. https://doi.org/10.1109/TSMC.2017.2703921. · doi:10.1109/TSMC.2017.2703921
[7] LiuL, LiuY, TongS. Fuzzy‐based multierror constraint control for switched nonlinear systems and its applications. IEEE Trans Fuzzy Syst. 2019;27(8):1519‐1531. https://doi.org/10.1109/TFUZZ.2018.2882173. · doi:10.1109/TFUZZ.2018.2882173
[8] LiD, ChenCLP, LiuY, TongS. Neural network controller design for a class of nonlinear delayed systems with time‐varying full‐state constraints. IEEE Trans Neural Netw Learn Syst. 2019;30(9):2625‐2636. https://doi.org/10.1109/TNNLS.2018.2886023. · doi:10.1109/TNNLS.2018.2886023
[9] XiC, DongJ. Adaptive reliable guaranteed performance control of uncertain nonlinear systems by using exponent‐dependent barrier Lyapunov function. Int J Robust Nonlinear Control. 2019;29(4):1051‐1062. https://doi.org/10.1002/rnc.4422. · Zbl 1418.93133 · doi:10.1002/rnc.4422
[10] LuJ, XiY, LiD. Stochastic model predictive control for probabilistically constrained Markovian jump linear systems with additive disturbance. Int J Robust Nonlinear Control. 2019;29(15):5002‐5016. https://doi.org/10.1002/rnc.3971. · Zbl 1426.93369 · doi:10.1002/rnc.3971
[11] Emami‐NaeiniA, FranklinG. Deadbeat control and tracking of discrete‐time systems. IEEE Trans Automat Contr. 1982;27(1):176‐181. https://doi.org/10.1109/TAC.1982.1102818. · Zbl 0469.93057 · doi:10.1109/TAC.1982.1102818
[12] HuseinbegovićS, Peruničić‐DraženovićB, VeselićB, MilosavljevićC. Higher order sliding mode based dead‐beat control with disturbance compensation for multi‐input LTI systems. Paper presented at Graz, Proceedings of the 2018 15th International Workshop on Variable Structure Systems (VSS). Austria; 2018:309‐314
[13] AbidiK, Jian‐XinX. A discrete‐time integral sliding mode control approach for output tracking with state estimation. IFAC Proc Vols. 2008;41(2):14199‐14204. 17th IFAC World Congress. https://doi.org/10.3182/20080706‐5‐KR‐1001.02407. · doi:10.3182/20080706‐5‐KR‐1001.02407
[14] JiangY, XuW, MuC, LiuY. Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system. IEEE Trans Veh Technol. 2018;67(1):251‐263. https://doi.org/10.1109/TVT.2017.2752778. · doi:10.1109/TVT.2017.2752778
[15] ZhangX, HouB, MeiY. Deadbeat predictive current control of permanent‐magnet synchronous motors with stator current and disturbance observer. IEEE Trans Power Electron. 2017;32(5):3818‐3834. https://doi.org/10.1109/TPEL.2016.2592534. · doi:10.1109/TPEL.2016.2592534
[16] YanXG, SpurgeonSK, EdwardsC. Static output feedback sliding mode control for time‐varying delay systems with time‐delayed nonlinear disturbances. IFAC Proc Vols. 2008;41(2):8642‐8647. 17th IFAC World Congress. https://doi.org/10.3182/20080706‐5‐KR‐1001.01461. · doi:10.3182/20080706‐5‐KR‐1001.01461
[17] KamalS, MorenoJA, ChalangaA, BandyopadhyayB, FridmanLM. Continuous terminal sliding‐mode controller. Automatica. 2016;69:308‐314. · Zbl 1338.93100
[18] Cruz‐ZavalaE, MorenoJA, FridmanL. Lyapunov‐based design for a class of variable‐gain 2nd‐sliding controllers with the desired convergence rate. Int J Robust Nonlinear Control. 2018;28(17):5279‐5296. https://doi.org/10.1002/rnc.4310. · Zbl 1408.93037 · doi:10.1002/rnc.4310
[19] MaoQ, DouL, TianB, ZongQ. Reentry attitude control for a reusable launch vehicle with aeroservoelastic model using type‐2 adaptive fuzzy sliding mode control. Int J Robust Nonlinear Control. 2018;28(18):5858‐5875. https://doi.org/10.1002/rnc.4349. · Zbl 1405.93061 · doi:10.1002/rnc.4349
[20] ShahnaziR, ZhaoQ. Adaptive fuzzy descriptor sliding mode observer‐based sensor fault estimation for uncertain nonlinear systems. Asian J Control. 2016;18(4):1478‐1488. https://doi.org/10.1002/asjc.1249. · Zbl 1346.93110 · doi:10.1002/asjc.1249
[21] SharmaNK, JanardhananS. Optimal discrete higher‐order sliding mode control of uncertain LTI systems with partial state information. Int J Robust Nonlinear Control. 2017;27(17):4104‐4115. https://doi.org/10.1002/rnc.3785. · Zbl 1386.93068 · doi:10.1002/rnc.3785
[22] SharmaNK, JanardhananS. Discrete‐time higher‐order sliding mode control of systems with unmatched uncertainty. Int J Robust Nonlinear Control. 2019;29(1):135‐152. https://doi.org/10.1002/rnc.4377. · Zbl 1411.93047 · doi:10.1002/rnc.4377
[23] XiongX, KamalS, JinS. Adaptive gains to super‐twisting technique for sliding mode design. Asian J Control. 2021;23(1):362‐373. https://doi.org/10.1002/asjc.2202. · Zbl 07878811 · doi:10.1002/asjc.2202
[24] AcaryV, BrogliatoB. Implicit Euler numerical scheme and chattering‐free implementation of sliding mode systems. Syst Control Lett. 2010;59(5):284‐293. · Zbl 1191.93030
[25] AcaryV, BrogliatoB, OrlovYV. Chattering‐free digital sliding‐mode control with state observer and disturbance rejection. IEEE Trans Automat Contr. 2012;57(5):1087‐1101. · Zbl 1369.93122
[26] HuberO, AcaryV, BrogliatoB. Lyapunov stability and performance analysis of the implicit discrete sliding mode control. IEEE Trans Automat Contr. 2016;61(10):3016‐3030. https://doi.org/10.1109/TAC.2015.2506991. · Zbl 1359.93091 · doi:10.1109/TAC.2015.2506991
[27] LuoD, XiongX, JinS, KamalS. Adaptive gains of dual level to super‐twisting algorithm for sliding mode design. IET Control Theory Appl. 2018;12(17):2347‐2356. https://doi.org/10.1049/iet‐cta.2018.5380. · doi:10.1049/iet‐cta.2018.5380
[28] BrogliatoB, PolyakovA, EfimovD. The implicit discretization of the supertwisting sliding‐mode control algorithm. IEEE Trans Automat Contr. 2020;65(8):3707‐3713. https://doi.org/10.1109/TAC.2019.2953091. · Zbl 1533.93091 · doi:10.1109/TAC.2019.2953091
[29] KikuuweR, YasukouchiS, FujimotoH, YamamotoM. Proxy‐based sliding mode control: a safer extension of PID position control. IEEE Trans Automat Contr. 2010;26(4):670‐683.
[30] JinS, KikuuweR, YamamotoM. Improving velocity feedback for position control by using a discrete‐time sliding mode filtering with adaptive windowing. Adv Robot. 2014;28(14):943‐953. https://doi.org/10.1080/01691864.2014.899161. · doi:10.1080/01691864.2014.899161
[31] LevantA. Higher‐order sliding modes, differentionation and output‐feedback control. Int J Control. 2003;76(9-10):924‐941. · Zbl 1049.93014
[32] LevantA. Principles of 2 sliding mode design. Automatica. 2007;43(4):576‐586. · Zbl 1261.93027
[33] HuberO, AcaryV, BrogliatoB. Lyapunov stability analysis of the implicit discrete‐time twisting control algorithm. IEEE Trans Autom Control. 2020;65(6):2619‐2626. https://doi.org/10.1109/TAC.2019.2940323. · Zbl 1533.93565 · doi:10.1109/TAC.2019.2940323
[34] LiuL, ZhengWX, DingS. An adaptive SOSM controller design by using a sliding‐mode‐based filter and its application to buck converter. IEEE Trans Circuits Syst I Reg Papers. 2020;67(7):2409‐2418. https://doi.org/10.1109/TCSI.2020.2973254. · Zbl 1468.93097 · doi:10.1109/TCSI.2020.2973254
[35] UtkinVI, PoznyakAS. Adaptive sliding mode control with application to super‐twist algorithm: equivalent control method. Automatica. 2013;49(1):39‐47. https://doi.org/10.1016/j.automatica.2012.09.008. · Zbl 1257.93022 · doi:10.1016/j.automatica.2012.09.008
[36] BandyopadhyayB, GandhiPS, KurodeS. Sliding mode observer based sliding mode controller for slosh‐free motion through PID scheme. IEEE Trans Ind Electron. 2009;56(9):3432‐3442. https://doi.org/10.1109/TIE.2009.2026380. · doi:10.1109/TIE.2009.2026380
[37] KurodeS, SpurgeonSK, BandyopadhyayB, GandhiPS. Sliding mode control for slosh‐free motion using a nonlinear sliding surface. IEEE/ASME Trans Mechatron. 2013;18(2):714‐724. https://doi.org/10.1109/TMECH.2011.2182056. · doi:10.1109/TMECH.2011.2182056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.