×

Inverse optimal control via diagonal stabilization applied to attitude tracking of a reusable launch vehicle. (English) Zbl 1481.49036

Summary: In this work, a novel strategy for the inverse optimal control of a class of affine nonlinear systems is proposed. The proposed strategy involves translation of the infinite horizon nonlinear optimal control problem into a Diagonal stability problem, followed by the formulation of a set of criteria for the synthesis of a stabilizing feedback control law. Hence, the proposed controller design methodology is refered to as inverse optimal control via diagonal stabilization. Besides providing a closed-form solution, the methodology also possesses the added advantage of inherent robustness, on account of adequate stability margins. Most importantly, the methodology ensures an estimate of the associated domain of attraction, which is a highly desirable feature especially in the case of crucial and stringent aerospace applications. The proposed methodology is applied for the re-entry control of a reusable launch vehicle which provides a full envelope optimality-based design philosophy. For this, the control-oriented attitude model based on the three-degree-of-freedom dynamic model is utilized. The resulting control law possess desirable features of guaranteed estimate of stability domain, assured design flexibility, and inherent robustness. Simulation results verify the validity of these theoretically proven facets in terms of the efficacy and robustness of the proposed controller.

MSC:

49N45 Inverse problems in optimal control

Software:

SOCS
Full Text: DOI

References:

[1] Banks, HT; Lewis, BM; Tran, HT, Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach, Comput. Optim. Appl., 37, 2, 177-218 (2007) · Zbl 1117.49032 · doi:10.1007/s10589-007-9015-2
[2] Batmani, Y.; Davoodi, M.; Meskin, N., Nonlinear suboptimal tracking controller design using state-dependent Riccati equation technique, IEEE Trans. Control Syst. Technol., 25, 5, 1833-1839 (2017) · doi:10.1109/TCST.2016.2617285
[3] Beikzadeh, H.; Taghirad, HD, Robust SDRE filter design for nonlinear uncertain systems with an H∞ performance criterion, ISA Trans., 51, 1, 146-152 (2012) · doi:10.1016/j.isatra.2011.09.003
[4] Beeler, SC; Tran, HT; Banks, HT, Feedback Control Methodologies for Nonlinear Systems, J. Optim. Theory Appl., 107, 1-33 (2000) · Zbl 0971.49023 · doi:10.1023/A:1004607114958
[5] Betts, J. T.: Advanced Applications. In: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Cambridge University Press, New York, pp. 353-409, (2010) · Zbl 1189.49001
[6] Bollino, K., Oppenheimer, M., Doman, D: Optimal Guidance Command Generation and Tracking for Reusable Launch Vehicle Re-entry. In: AIAA Guidance, Navigation, and Control Conference and Exhibit., Colorado (2006)
[7] Bracci, A.; Innocenti, M.; Pollini, L., Estimation of the region of attraction for state-dependent Riccati equation controllers, J. Guid. Control Dynam., 29, 6, 1427-1430 (2006) · doi:10.2514/1.22122
[8] Burken, JJ; Lu, P.; Wu, Z.; Bahm, C., Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation, J. Guidance Control Dynam., 24, 3, 482-495 (2001) · doi:10.2514/2.4769
[9] Casti, J., On the general inverse problem of optimal control theory, J. Optim. Theory Appl., 32, 491-497 (1980) · Zbl 0421.49029 · doi:10.1007/BF00934036
[10] Chaplais, F.; Petit, N., Inversion in indirect optimal control of multivariable systems, ESAIM control Optim. Calculus Variat., 14, 2, 294-317 (2008) · Zbl 1388.49019 · doi:10.1051/cocv:2007054
[11] Chaplais, F., Petit N.: Inversion in indirect optimal control: constrained and unconstrained cases. In: 46th IEEE Conference on Decision and Control, New Orleans, LA, 683-689 (2007)
[12] Cimen, T., Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis, J. Guid. Control Dynam., 35, 4, 1025-1047 (2012) · doi:10.2514/1.55821
[13] Desai, PN; Conway, BA, Six-degree-of-freedom trajectory optimization using two-timescale collocation architecture, Journal of Guidance, Control, and Dynamic, 31, 5, 1308-1315 (2008) · doi:10.2514/1.34020
[14] Do, TD; Kwak, S.; Choi, HH; Jung, JW, Suboptimal control scheme design for interior permanent-magnet synchronous motors: An SDRE-based approach, IEEE Trans. Power Electron., 29, 6, 3020-3031 (2014) · doi:10.1109/TPEL.2013.2272582
[15] Erdem, EB; Alleyne, AG, Design of a Class of Nonlinear Controllers via State-dependent Riccati Equations, IEEE Trans. Control Syst. Technol., 12, 1, 133-137 (2004) · doi:10.1109/TCST.2003.819588
[16] Freeman, RA; Kokotovic, PV, Inverse optimality in robust stabilization, SIAM J. Control Optim., 34, 4, 1365-1391 (1996) · Zbl 0863.93075 · doi:10.1137/S0363012993258732
[17] Freeman, R. A., Kokotovic, P.V.: Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Birkhauser Boston Inc., Cambridge, MA, USA (1996). https://www.springer.com/la/book/9780817647582. · Zbl 0857.93001
[18] Graichen, K., Petit, N.: A continuation approach to state and adjoint calculation in optimal control applied to the re-entry problem. In: Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, 14307-14312 (2008).
[19] Gumus, M.; Xu, J., On common diagonal Lyapunov solutions, Linear Algebra Appl., 507, 32-50 (2016) · Zbl 1382.93029 · doi:10.1016/j.laa.2016.05.032
[20] Halbe, O.; Raja, RG; Padhi, R., Robust re-entry guidance of a reusable launch vehicle using model predictive static programming, J Guid. Control Dynam., 37, 1, 134-148 (2013) · doi:10.2514/1.61615
[21] Heydari, A.; Landers, RG; Balakrishnan, SN, Optimal control approach for turning process planning optimization, IEEE Trans. Control Syst. Technol., 22, 4, 1337-1349 (2014) · doi:10.1109/TCST.2013.2281374
[22] Johnson, E. N., Calise, A. J., El-Shirbiny, H. A.: Feedback Linearization with neural network augmentation applied to X-33 attitude control. In:
[23] Juliana, S., Chu, Q. P., Mulder J. A., van Baten, T.J.: The Analytical Derivation of Nonlinear Dynamic Inversion Control for Parametric Uncertain System. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, (2005).
[24] Korayem, MH; Lademakhi, NY; Nekoo, SR, Application of the state-dependent Riccati equation for flexible-joint arms: controller and estimator design, Optim. Control Appl. Methods, 39, 2, 792-808 (2018) · Zbl 1391.93153 · doi:10.1002/oca.2377
[25] Lam, Q. M., Krishnamurthy, P., Khorrami, F.: Enhancing flight control system performance using SDRE based controller as an augmentation layer. In: AIAA Guidance, Navigation, and Control Conference, Chicago, lllinois, (2009).
[26] Lastire, EA; Sanchez, EN; Alanis, AY; Ornelas-Tellez, F., Passivity analysis of discrete-time inverse optimal control for trajectory tracking, J. Franklin Inst, 353, 13, 3192-3206 (2016) · Zbl 1344.49058 · doi:10.1016/j.jfranklin.2016.05.016
[27] Leon, BS; Alanis, AY; Sanchez, EN; Ornelas-Tellez, F.; Ruiz-Velazquez, E., Inverse optimal neural control of blood glucose level for type 1 diabetes mellitus patients, J. Franklin Inst., 349, 5, 1851-1870 (2012) · Zbl 1255.49062 · doi:10.1016/j.jfranklin.2012.02.011
[28] Liang, YW; Lin, LG, Analysis of SDC matrices for successfully implementing the SDRE scheme, Automatica, 49, 10, 3120-3124 (2013) · Zbl 1358.93086 · doi:10.1016/j.automatica.2013.07.026
[29] Lopez, VG; Sanchez, EN; Alanis, AY; Rios, JD, Real-time neural inverse optimal control for a linear induction motor, Int. J. Control, 90, 4, 800-812 (2017) · Zbl 1367.49028 · doi:10.1080/00207179.2016.1213424
[30] Madrid, Spain, pp.
[31] Mao, Q.; Dou, L.; Zong, Q.; Ding, Z., Attitude controller design for reusable launch vehicles during re-entry phase via compound adaptive fuzzy H-infinity control, Aerosp. Sci. Technol., 72, 36-48 (2018) · doi:10.1016/j.ast.2017.10.012
[32] Mao, Q.; Dou, L.; Tian, B.; Zong, Q., Re-entry attitude control for a reusable launch vehicle with aeroservoelastic model using type-2 adaptive fuzzy sliding mode control, Int J Robust Nonlinear Control., 28, 5858-5875 (2018) · Zbl 1405.93061 · doi:10.1002/rnc.4349
[33] Ornelas-Tellez, F.; Rico, JJ; Ruiz-Cruz, R., Optimal tracking for state-dependent coefficient factorized nonlinear systems, Asian J. Control, 16, 3, 890-903 (2014) · Zbl 1302.49048 · doi:10.1002/asjc.761
[34] Petit, N., Milam, M. B.: Murray, R., M.: Inversion Based Constrained Trajectory Optimization. In: IFAC Proceedings Volumes 34(6), pp. 1211-1216 (2001)
[35] Pukdeboon, C., Optimal output feedback controllers for spacecraft attitude tracking, Asian J. Control, 15, 5, 1284-1294 (2013) · Zbl 1286.93078 · doi:10.1002/asjc.615
[36] Sanchez, EN; Ornelas-Tellez, F., Discrete-Time Neural Inverse Optimal Control for Nonlinear Systems (2013), Boca Raton: CRC Press Inc, Boca Raton · Zbl 1276.93001
[37] Shorten, R.; Narendra, KS, On a theorem of Redheffer concerning diagonal stability, Linear Algebra Appl., 431, 12, 2317-2329 (2009) · Zbl 1207.34068 · doi:10.1016/j.laa.2009.02.035
[38] Sheng, YZ; Geng, J.; Liu, XD; Wang, L., Nonsingular finite-time second order sliding mode attitude control for re-entry vehicle, Int. J. Control Autom. Syst., 13, 4, 853-866 (2015) · doi:10.1007/s12555-013-0181-y
[39] Valasek, J., Ito, D., Ward, D., Robust dynamic inversion controller design and analysis for the X-38. In: AIAA Guidance, navigation and Control Conf. and Exhib., Montreal, Canada (2001)
[40] Wang, Z.; Ho, D., Output Feedback Robust H∞ Control with D-stability and variance constraints: parametrization approach, J. of Dyn. Control Syst., 11, 263-280 (2005) · Zbl 1177.93095 · doi:10.1007/s10883-005-4174-x
[41] Wang, F.; Hua, C.; Zong, Q., Attitude control of reusable launch vehicle in re-entry phase with input constraint via robust adaptive backstepping control, Int. J. Adapt. Control Signal Process., 29, 1308-1327 (2015) · Zbl 1330.93079 · doi:10.1002/acs.2541
[42] Xin, M.; Balakrishnan, SN; Stansbery, DT; Ohlmeyer, EJ, Nonlinear missile autopilot design with θ−D technique, J. Guid. Control Dynam., 27, 3, 406-417 (2004) · doi:10.2514/1.1217
[43] Xin, M.; Balakrishnan, SN; Pernicka, HJ, Libration point station keeping using the θ-D technique, J. Astro. Sci., 56, 231-250 (2008) · doi:10.1007/BF03256550
[44] Zerar, M.; Cazaurang, F.; Zolghadri, A., Coupled linear parameter varying and flatness-based approach for space re-entry vehicles guidance, IET Control Theory Appl., 3, 8, 1081-1092 (2009) · doi:10.1049/iet-cta.2008.0057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.