×

Asymptotic flatness of Morrey extremals. (English) Zbl 1448.35014

Summary: We study the limiting behavior as \(|x|\rightarrow \infty\) of extremal functions \(u\) for Morrey’s inequality on \(\mathbb{R}^n\). In particular, we compute the limit of \(u(x)\) as \(|x|\rightarrow \infty\) and show |\(x|| Du (x)\)| tends to 0. To this end, we exploit the fact that extremals are uniformly bounded and that they each satisfy a PDE of the form \(-\Delta_pu=c(\delta_{x_0}-\delta_{y_0})\) for some \(c\in \mathbb{R}\) and distinct \(x_0\), \(y_0\in \mathbb{R}^n\). More generally, we explain how to quantitatively deduce the asymptotic flatness of bounded \(p\)-harmonic functions on exterior domains of \(\mathbb{R}^n\) for \(p>n\).

MSC:

35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
26D10 Inequalities involving derivatives and differential and integral operators
35J92 Quasilinear elliptic equations with \(p\)-Laplacian

References:

[1] Calder, J., The game theoretic \(p\)-Laplacian and semi-supervised learning with few labels, Nonlinearity, 32, 1, 301-330 (2019) · Zbl 1408.35048 · doi:10.1088/1361-6544/aae949
[2] Evans, LC, A new proof of local \(C^{1,\alpha }\) regularity for solutions of certain degenerate elliptic p.d.e, J. Differ. Equ., 45, 3, 356-373 (1982) · Zbl 0508.35036 · doi:10.1016/0022-0396(82)90033-X
[3] Evans, LC, Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics (2010), Providence: American Mathematical Society, Providence · Zbl 1194.35001
[4] Fraas, M.; Pinchover, Y., Positive Liouville theorems and asymptotic behavior for \(p\)-Laplacian type elliptic equations with a Fuchsian potential, Conflu. Math., 3, 2, 291-323 (2011) · Zbl 1227.35107 · doi:10.1142/S1793744211000321
[5] Fraas, M.; Pinchover, Y., Isolated singularities of positive solutions of \(p\)-Laplacian type equations in \({\mathbb{R}}^d\), J. Differ. Equ., 254, 3, 1097-1119 (2013) · Zbl 1336.35173 · doi:10.1016/j.jde.2012.10.006
[6] Hynd, R., Seuffert, F.: Extremals of Morrey’s inequality (2018)
[7] Kichenassamy, S., Quasilinear problems with singularities, Manuscr. Math., 57, 3, 281-313 (1987) · Zbl 0595.35024 · doi:10.1007/BF01437485
[8] Kichenassamy, S.; Véron, L., Singular solutions of the \(p\)-Laplace equation, Math. Ann., 275, 4, 599-615 (1986) · Zbl 0592.35031 · doi:10.1007/BF01459140
[9] Kichenassamy, S.; Véron, L., Erratum: “Singular solutions of the \(p\)-Laplace equation”, Math. Ann., 277, 2, 352 (1987) · Zbl 0653.35018 · doi:10.1007/BF01457369
[10] Lewis, JL, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32, 6, 849-858 (1983) · Zbl 0554.35048 · doi:10.1512/iumj.1983.32.32058
[11] Lindqvist, P.: Notes on the \(p\)-Laplace equation. Report, vol. 102. University of Jyväskylä Department of Mathematics and Statistics. University of Jyväskylä, Jyväskylä (2006) · Zbl 1256.35017
[12] Martos, B., Nonlinear Programming: Theory and Methods (1975), Amsterdam: North-Holland Publishing Co., Amsterdam · Zbl 0357.90027
[13] Pinchover, Y.; Tintarev, K., On positive solutions of minimal growth for singular \(p\)-Laplacian with potential term, Adv. Nonlinear Stud., 8, 2, 213-234 (2008) · Zbl 1147.35032 · doi:10.1515/ans-2008-0201
[14] Serrin, J., Local behavior of solutions of quasi-linear equations, Acta Math., 111, 247-302 (1964) · Zbl 0128.09101 · doi:10.1007/BF02391014
[15] Serrin, J.: Singularities of solutions of nonlinear equations. In: Proceedings of Symposia in Applied Mathematics, vol. XVII, pp. 68-88. American Mathematical Society, Providence, R.I. (1965) · Zbl 0149.30701
[16] Slepčev, D.; Thorpe, M., Analysis of \(p\)-Laplacian regularization in semisupervised learning, SIAM J. Math. Anal., 51, 3, 2085-2120 (2019) · Zbl 1422.49020 · doi:10.1137/17M115222X
[17] Ural’ceva, NN, Degenerate quasilinear elliptic systems, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7, 184-222 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.