×

Two-arc-transitive bicirculants. (English) Zbl 1521.05064

Summary: In this paper, we determine the class of finite 2-arc-transitive bicirculants. We show that a connected 2-arc-transitive bicirculant is one of the following graphs: \( C_{2 n}\) where \(n \geqslant 2\), \(\operatorname{K}_{2 n}\) where \(n \geqslant 2\), \(\operatorname{K}_{n , n}\) where \(n \geqslant 3\), \(\operatorname{K}_{n , n} - n \operatorname{K}_2\) where \(n \geqslant 4\), \(B( \operatorname{PG}(d - 1, q))\) and \(B^\prime( \operatorname{PG}(d - 1, q))\) where \(d \geq 3\) and \(q\) is a prime power, \( X_1(4, q)\) where \(q \equiv 3 \pmod{4}\) is a prime power, \( \operatorname{K}_{q + 1}^{2 d}\) where \(q\) is an odd prime power and \(d \geq 2\) dividing \(q - 1\), \(A T_Q(1 + q, 2 d)\) where \(d | q - 1\) and \(d \nmid \frac{ 1}{ 2}(q - 1)\), \(A T_D(1 + q, 2 d)\) where \(d | \frac{ 1}{ 2}(q - 1)\) and \(d \geq 2\), \(\Gamma(d, q, r)\), where \(d \geq 2\), \(q\) is a prime power and \(r | q - 1\), Petersen graph, Desargues graph, dodecahedron graph, folded 5-cube, \(X(2, 2)\), \(X^\prime(3, 2)\), \(X_2(3)\), \(A T_Q(4, 12)\), \(G P(12, 5)\), \(G P(24, 5)\), \(B(H(11))\), \(B^\prime(H(11))\), \(A T_D(4, 6)\) and \(A T_D(5, 6)\).

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
05E30 Association schemes, strongly regular graphs

Software:

Magma

References:

[1] Alspach, B.; Conder, M.; Marušič, D.; Xu, M. Y., A classification of 2-arc-transitive circulants, J. Algebraic Comb., 5, 83-86 (1996) · Zbl 0849.05034
[2] Antončič, I.; Hujdurovič, A.; Kutnar, K., A classification of pentavalent arc-transitive bicirculants, J. Algebraic Comb., 41, 643-668 (2015) · Zbl 1328.05076
[3] Arroyo, A.; Hubard, I.; Kutnar, K.; O’Reilly, E.; Šparl, P., Classification of symmetric Tabačjn graphs, Graphs Comb., 31, 1137-1153 (2015) · Zbl 1321.05196
[4] Bosma, W.; Cannon, C.; Playoust, C., The MAGMA algebra system I: the user language, J. Symb. Comput., 24, 235-265 (1997) · Zbl 0898.68039
[5] Brouwer, A. E.; Cohen, A. M.; Neumaier, A., Distance-Regular Graphs (1989), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York · Zbl 0747.05073
[6] Burnside, W., Theory of Groups of Finite Order (1911), Cambridge University Press: Cambridge University Press Cambridge · JFM 42.0151.02
[7] Cameron, P. J., Permutation Groups, London Mathematical Society Student Texts, vol. 45 (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0922.20003
[8] Cheng, Y.; Oxley, J., On weakly symmetric graphs of order twice a prime, J. Comb. Theory, Ser. B, 42, 196-211 (1987) · Zbl 0583.05032
[9] Devillers, A.; Giudici, M.; Jin, W., Arc-transitive bicirculants, J. Lond. Math. Soc., 105, 1-23 (2022) · Zbl 1519.05256
[10] Devillers, A.; Giudici, M.; Li, C. H.; Praeger, C. E., Locally s-distance transitive graphs, J. Graph Theory, 69, 2, 176-197 (2012) · Zbl 1234.05119
[11] Dixon, J. D.; Mortimer, B., Permutation Groups (1996), Springer: Springer New York · Zbl 0951.20001
[12] Du, S. F.; Xu, M. Y., A classification of semisymmetric graphs of order \(2 p q\), Commun. Algebra, 28, 2685-2715 (2000) · Zbl 0944.05051
[13] Du, S. F.; Kwak, J. H.; Xu, M. Y., On 2-arc-transitive covers of complete graphs with covering transformation group \(\mathbb{Z}_p^3\), J. Comb. Theory, Ser. B, 93, 73-93 (2005) · Zbl 1063.05066
[14] Du, S. F.; Malnič, A.; Marušič, D., Classification of 2-arc-transitive dihedrants, J. Comb. Theory, Ser. B, 98, 1349-1372 (2008) · Zbl 1183.05035
[15] Du, S. F.; Marušič, D.; Waller, A. O., On 2-arc-transitive covers of complete graphs, J. Comb. Theory, Ser. B, 74, 276-290 (1998) · Zbl 1026.05057
[16] S.F. Du, A. Malnič, D. Marušič, W.Q. Xu, A remark on 2-arc-transitive regular covers, in preparation.
[17] Feng, Y. Q.; Kwak, J. H., Classifying cubic symmetric graphs of order 10p or \(10 p^2\), Sci. China Ser. A, 49, 300-319 (2006) · Zbl 1109.05051
[18] Feng, Y. Q.; Wang, K. S., S-regular cyclic coverings of the three-dimensional hypercube \(Q_3\), Eur. J. Comb., 24, 719-731 (2003) · Zbl 1035.05048
[19] Frucht, R., Die gruppe des Petersenschen Graphen und der Kantensysteme der regularen Polyeder, Comment. Math. Helv., 9, 217-223 (1936) · JFM 63.0068.03
[20] Frucht, R.; Graver, J. E.; Watkins, M. E., The groups of the generalized Petersen graphs, Proc. Camb. Philos. Soc., 70, 211-218 (1971) · Zbl 0221.05069
[21] Gross, J. L.; Tucker, T. W., Topological Graph Theory (1987), Wiley-Interscience: Wiley-Interscience New York · Zbl 0621.05013
[22] Ivanov, A. A.; Praeger, C. E., On finite affine 2-arc transitive graphs, Eur. J. Comb., 14, 421-444 (1993) · Zbl 0794.05045
[23] Jajcay, R.; Miklavič, S.; Šparl, P.; Vasiljević, G., On certain edge-transitive bicirculants, Electron. J. Comb., 26 (2019), #P2.6 · Zbl 1409.05138
[24] Kovács, I.; Kutnar, K.; Marusič, D., Classification of edge-transitive Rose window graphs, J. Graph Theory, 65, 216-231 (2010) · Zbl 1219.05154
[25] Kovács, I.; Kuzman, B.; Malnič, A., On non-normal arc-transitive 4-valent dihedrants, Acta Math. Sin. Engl. Ser., 26, 1485-1498 (2010) · Zbl 1216.05016
[26] Kovács, I.; Kuzman, B.; Malnič, A.; Wilson, S., Characterization of edge-transitive 4-valent bicirculants, J. Graph Theory, 69, 441-463 (2012) · Zbl 1242.05121
[27] Leung, K. H.; Ma, S. L., Partial difference triples, J. Algebraic Comb., 2, 397-409 (1993) · Zbl 0788.05094
[28] Li, C. H.; Pan, J. M., Finite 2-arc-transitive abelian Cayley graphs, Eur. J. Comb., 29, 148-158 (2008) · Zbl 1193.05089
[29] Malnič, A.; Marušič, D.; Šparl, P.; Frelih, B., Symmetry structure of bicirculants, Discrete Math., 307, 409-414 (2007) · Zbl 1110.05045
[30] Marušič, D.; Pisanski, T., Symmetries of hexagonal molecular graphs on the torus, Croat. Chem. Acta, 73, 969-981 (2000)
[31] Müller, P., Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Laurent polynomials, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 12, 369-438 (2013) · Zbl 1366.20001
[32] Pisanski, T., A classification of cubic bicirculants, Discrete Math., 307, 567-578 (2007) · Zbl 1109.05055
[33] Qiao, Z.; Du, S. F.; Koolen, J., 2-walk-regular dihedrants from group divisible designs, Electron. J. Comb., 23, 2 (2016), #P2.51 · Zbl 1339.05098
[34] de Resmini, M. J.; Jungnickel, D., Strongly regular semi-Cayley graphs, J. Algebraic Comb., 1, 171-195 (1992) · Zbl 0801.05070
[35] Tutte, W. T., A family of cubical graphs, Proc. Camb. Philos. Soc., 43, 459-474 (1947) · Zbl 0029.42401
[36] Tutte, W. T., On the symmetry of cubic graphs, Can. J. Math., 11, 621-624 (1959) · Zbl 0093.37701
[37] Weiss, R., The non-existence of 8-transitive graphs, Combinatorica, 1, 309-311 (1981) · Zbl 0486.05032
[38] Wielandt, H., Finite Permutation Groups (1964), Academic Press: Academic Press New York · Zbl 0138.02501
[39] Wilson, S., Rose window graphs, Ars Math. Contemp., 1, 7-19 (2008) · Zbl 1170.05034
[40] Xu, W. Q.; Du, S. F., 2-Arc-transitive cyclic covers of \(\operatorname{K}_{n , n} - n \operatorname{K}_2\), J. Algebraic Comb., 39, 883-902 (2014) · Zbl 1292.05192
[41] Xu, W. Q.; Du, S. F., 2-Arc-transitive cyclic covers of \(\operatorname{K}_{n , n} \), J. Algebraic Comb., 48, 647-664 (2018) · Zbl 1401.05142
[42] Xu, W. Q.; Du, S. F.; Kwak, J. H.; Xu, M. Y., 2-Arc-transitive metacyclic covers of complete graphs, J. Comb. Theory, Ser. B, 111, 54-74 (2015) · Zbl 1307.05116
[43] Zhou, J. X.; Feng, Y. Q., Cubic bi-Cayley graphs over abelian groups, Eur. J. Comb., 36, 679-693 (2014) · Zbl 1284.05133
[44] Zhou, J. X.; Feng, Y. Q., The automorphisms of bi-Cayley graphs, J. Comb. Theory, Ser. B, 116, 504-532 (2016) · Zbl 1327.05151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.