×

Stability of nonlinear waves and patterns and related topics. (English) Zbl 1402.35245

Summary: Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C07 Traveling wave solutions
35Q55 NLS equations (nonlinear Schrödinger equations)
35B35 Stability in context of PDEs

Software:

STABLAB
Full Text: DOI

References:

[1] Pego, RL; Weinstein, MI, Eigenvalues, and instabilities of solitary waves, Phil. Trans. R. Soc. Lond. A, 340, 47-94, (1992) · Zbl 0776.35065 · doi:10.1098/rsta.1992.0055
[2] Alexander, JC; Sachs, R., Linear stability of solitary waves of a Boussinesq-type equation: a computer assisted computation, Nonlinear World, 2, 471-507, (1995) · Zbl 0833.34046
[3] Brin, L., Numerical testing of the stability of viscous shock waves, Math. Comput., 70, 1071-1088, (2000) · Zbl 0980.65092 · doi:10.1090/S0025-5718-00-01237-0
[4] Brin, LQ; Zumbrun, K., Analytically varying eigenvectors and the stability of viscous shock waves, Mat. Contemp., 22, 19-32, (2002) · Zbl 1044.35057
[5] Allen, L.; Bridges, TJ, Numerical exterior algebra and the compound matrix method, Numer. Math., 92, 197-232, (2002) · Zbl 1012.65079 · doi:10.1007/s002110100365
[6] Bridges, TJ; Derks, G.; Gottwald, G., Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework, Physica D, 172, 190-216, (2002) · Zbl 1047.37053 · doi:10.1016/S0167-2789(02)00655-3
[7] Afendikov, AL; Bridges, TJ, Instability of the Hocking-Stewartson pulse and its implications for three-dimensional Poiseuille flow, Proc. R. Soc. Lond. A, 457, 257-272, (2001) · Zbl 0984.76022 · doi:10.1098/rspa.2000.0665
[8] Barker, B.; Humpherys, J.; Zumbrun, K., STABLAB: a MATLAB-based numerical library for Evans function computation. See http://www.impact.byu.edu/stablab/, (2009)
[9] Lafortune, S.; Lega, J.; Madrid, S., Instability of local deformations of an elastic rod: numerical evaluation of the Evans function, SIAM. J. Appl. Math., 71, 1653-1672, (2011) · Zbl 1233.35188 · doi:10.1137/10081441X
[10] Gubernov, V.; Mercer, GN; Sidhu, HS; Weber, RO, Evans function stability of combustion waves, SIAM J. Appl. Math., 63, 1259-1275, (2003) · Zbl 1024.35044 · doi:10.1137/S0036139901400240
[11] Simon, PL; Kalliadasis, S.; Merkin, JH; Scott, SK, Evans function analysis of the stability of non-adiabatic flames, Combust. Theory Model., 9, 545-561, (2003) · Zbl 1068.80531 · doi:10.1088/1364-7830/7/3/306
[12] Aparicio, ND; Malham, SJA; Oliver, M., Numerical evaluation of the Evans function by Magnus integration, BIT Numer. Math., 45, 219-258, (2005) · Zbl 1078.65549 · doi:10.1007/s10543-005-0001-8
[13] Malham, S.; Niesen, J., Evaluating the Evans function: order reduction in numerical methods, Math. Comput., 77, 159-179, (2008) · Zbl 1127.65074 · doi:10.1090/S0025-5718-07-02016-9
[14] Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J., Evans function computation for the stability of travelling waves, Phil. Trans. R. Soc. A, 376, 20170184, (2018) · Zbl 1402.65052 · doi:10.1098/rsta.2017.0184
[15] Alexander, J.; Gardner, R.; Jones, C., A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math., 410, 167-212, (1990) · Zbl 0705.35070 · doi:10.1515/crll.1990.410.167
[16] Arnold, VI, The Sturm theorems and symplectic geometry, Funktsional. Anal. i Prilozhen., 19, 1-10, (1985) · Zbl 0606.58017 · doi:10.1007/BF01077289
[17] Beck, M.; Cox, G.; Jones, C.; Latushkin, Y.; McQuighan, K.; Sukhtayev, A., Instability of pulses in gradient reaction-diffusion systems: a symplectic approach, Phil. Trans. R. Soc. A, 376, 20170187, (2018) · Zbl 1402.35137 · doi:10.1098/rsta.2017.0187
[18] Beck, M.; Doikou, A.; Malham, SJA; Stylianidis, I., Partial differential systems with non-local nonlinearities: generation and solutions, Phil. Trans. R. Soc. A, 376, 20170195, (2018) · Zbl 1402.35289 · doi:10.1098/rsta.2017.0195
[19] Beck, M.; Doikou, A.; Malham, SJA; Stylianidis, I., Grassmannian flows and applications to nonlinear partial differential equations · Zbl 1411.35071
[20] Henry, D., Lecture Notes in Mathematics, vol. 840. Berlin, Germany: Springer, Geometric theory of semilinear parabolic equations, (1981) · Zbl 0456.35001
[21] Ozbag, F.; Schecter, S., Stability of combustion waves in a simplified gas-solid combustion model in porous media, Phil. Trans. R. Soc. A, 376, 20170185, (2018) · Zbl 1402.80005 · doi:10.1098/rsta.2017.0185
[22] Ghazaryan, A.; Latushkin, Y.; Schecter, S., Stability of traveling waves for a class of reaction-diffusion systems that arise in chemical reaction models, SIAM J. Math. Anal., 42, 2434-2472, (2010) · Zbl 1227.35057 · doi:10.1137/100786204
[23] Ghazaryan, A.; Latushkin, Y.; Schecter, S., Stability of traveling waves for degenerate systems of reaction diffusion equations, Indiana Univ. Math. J., 60, 443-472, (2011) · Zbl 1277.47055 · doi:10.1512/iumj.2011.60.4069
[24] Sandstede, B., Stability of travelling waves. In \(Handbook of dynamical systems\) (ed. B Fiedler), vol. 2, pp. 983-1055. Amsterdam, The Netherlands: North Holland, (2002) · Zbl 1056.35022
[25] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74, 160-197, (1987) · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[26] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal., 94, 308-348, (1990) · Zbl 0711.58013 · doi:10.1016/0022-1236(90)90016-E
[27] Kapitula, T.; Kevrekidis, PG; Sandstede, B., Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems, Physica D, 195, 263-282, (2004) · Zbl 1056.37080 · doi:10.1016/j.physd.2004.03.018
[28] Kapitula, T.; Kevrekidis, PG; Sandstede, B., Addendum: ‘Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems’, Physica D, 201, 199-201, (2005) · Zbl 1080.37070 · doi:10.1016/j.physd.2004.11.015
[29] Xu, H.; Cuevas-Maraver, J.; Kevrekidis, PG; Vainchtein, A., An energy-based stability criterion for solitary travelling waves in Hamiltonian lattices, Phil. Trans. R. Soc. A, 376, 20170192, (2018) · Zbl 1402.37086 · doi:10.1098/rsta.2017.0192
[30] Feng, W.; Stanislavova, M., On the vortices for the nonlinear Schrödinger equation in higher dimensions, Phil. Trans. R. Soc. A, 376, 20170189, (2018) · Zbl 1402.35259 · doi:10.1098/rsta.2017.0189
[31] Cuevas-Maraver, J.; Kevrekidis, PG; Vainchtein, A.; Xu, H., Unifying perspective: solitary traveling waves as discrete breathers in Hamiltonian lattices and energy criteria for their stability, Phys. Rev. E, 96, 032214, (2017) · doi:10.1103/PhysRevE.96.032214
[32] Desyatnikov, AS; Kivshar, Y.; Torner, L., Optical vortices and vortex solitons. Progress in Optics, vol. 47, (2005), Elsevier
[33] Kruglov, VI; Volkov, VM; Vlasov, RA; Drits, VV, Auto-waveguide propagation and the collapse of spiral light beams in non-linear media, J. Phys. A, 21, 4381-4395, (1988) · Zbl 0665.76047 · doi:10.1088/0305-4470/21/23/020
[34] Kruglov, V.; Logvin, Y.; Volkov, V., The theory of spiral laser beams in nonlinear media, J. Modern Opt., 39, 2277-2291, (1992) · Zbl 0941.78535 · doi:10.1080/09500349214552301
[35] Vuong, L.; Grow, T.; Ishaaya, A.; Gaeta, A.; Hooft, G.; Eliel, E.; Fibich, G., Collapse of optical vortices, Phys. Rev. Lett., 96, 133901, (2006) · doi:10.1103/PhysRevLett.96.133901
[36] Mizumachi, T., Vortex solitons for 2D focusing nonlinear Schrödinger equation, Differential Integral Eqns, 18, 431-450, (2005) · Zbl 1212.35455
[37] Mizumachi, T., Instability of vortex solitons for 2D focusing NLS, Adv. Differential Eqns, 12, 241-264, (2007) · Zbl 1158.35089
[38] Bridges, TJ; Ratliff, DJ, Nonlinear modulation near the Lighthill instability threshold in 2+1 Whitham theory, Phil. Trans. R. Soc. A, 376, 20170194, (2018) · Zbl 1402.35177 · doi:10.1098/rsta.2017.0194
[39] Lighthill, MJ, Some special cases treated by the Whitham theory, Proc. R. Soc. Lond. A, 299, 28-53, (1967) · doi:10.1098/rspa.1967.0121
[40] Beyn, W-J; Otten, D., Spectral analysis of localized rotating waves in parabolic systems, Phil. Trans. R. Soc. A, 376, 20170196, (2018) · Zbl 1402.35105 · doi:10.1098/rsta.2017.0196
[41] Ercolani, NM; Kamburov, N.; Lega, J., The phase structure of grain boundaries, Phil. Trans. R. Soc. A, 376, 20170193, (2018) · Zbl 1402.35135 · doi:10.1098/rsta.2017.0193
[42] Scheel, A.; Weinburd, J., Wavenumber selection via spatial parameter jump, Phil. Trans. R. Soc. A, 376, 20170191, (2018) · Zbl 1402.35136 · doi:10.1098/rsta.2017.0191
[43] Cross, MC; Newell, AC, Convection patterns in large aspect ratio systems, Physica D, 10, 299-328, (1984) · Zbl 0592.76052 · doi:10.1016/0167-2789(84)90181-7
[44] Ercolani, NM; Indik, R.; Newell, AC; Passot, T., The geometry of the phase diffusion equation, J. Nonlinear Sci., 10, 223-274, (2000) · Zbl 0981.76087 · doi:10.1007/s003329910010
[45] Delcey, L.; Haragus, M., Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability, Phil. Trans. R. Soc. A, 376, 20170188, (2018) · Zbl 1402.35257 · doi:10.1098/rsta.2017.0188
[46] Doelman, A.; van Heijster, P.; Shen, J., Pulse dynamics in reaction-diffusion equations with strong spatially localized impurities, Phil. Trans. R. Soc. A, 376, 20170183, (2018) · Zbl 1402.35138 · doi:10.1098/rsta.2017.0183
[47] Marvel, S.; Hong, H.; Papush, A.; Strogatz, S., Encouraging moderation: clues from a simple model of ideological conflict, Phys. Rev. Lett., 109, 118702, (2012) · doi:10.1103/PhysRevLett.109.118702
[48] Bujalski, J.; Dwyer, G.; Kapitula, T.; Le, Q-N; Malvai, H.; Rosenthal-Kay, J.; Ruiter, J., Consensus and clustering in opinion formation on networks, Phil. Trans. R. Soc. A, 376, 20170186, (2018) · Zbl 1402.91617 · doi:10.1098/rsta.2017.0186
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.