×

Generalized and multi-oscillation solitons in the nonlinear Schrödinger equation with quartic dispersion. (English) Zbl 07859797


MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35C08 Soliton solutions

References:

[1] Roy, S.; Biancalana, F., Formation of quartic solitons and a localized continuum in silicon-based slot waveguides, Phys. Rev. A, 87, 025801 (2013) · doi:10.1103/PhysRevA.87.025801
[2] Blanco-Redondo, A.; De Sterke, C. M.; Sipe, J. E.; Krauss, T. F.; Eggleton, B. J.; Husko, C., Pure-quartic solitons, Nat. Commun., 7, 10427 (2016) · doi:10.1038/ncomms10427
[3] Tam, K. K. K., Alexander, T. J., Blanco-Redondo, A., and De Sterke, C. M., “Solitary wave solutions in nonlinear media with quartic and quadratic dispersion-implications for high-power lasers,” in Laser Science (Optical Society of America, 2018), p. JW4A-78.
[4] Tam, K. K. K.; Alexander, T. J.; Blanco-Redondo, A.; De Sterke, C. M., Stationary and dynamical properties of pure-quartic solitons, Opt. Lett., 44, 3306-3309 (2019) · doi:10.1364/OL.44.003306
[5] Tam, K. K. K.; Alexander, T. J.; Blanco-Redondo, A.; De Sterke, C. M., Generalized dispersion Kerr solitons, Phys. Rev. A, 101, 043822 (2020) · doi:10.1103/PhysRevA.101.043822
[6] Karlsson, M.; Höök, A., Soliton-like pulses governed by fourth order dispersion in optical fibers, Opt. Commun., 104, 303-307 (1994) · doi:10.1016/0030-4018(94)90560-6
[7] Akhmediev, N. N.; Buryak, A. V.; Karlsson, M., Radiationless optical solitons with oscillating tails, Opt. Commun., 110, 540-544 (1994) · doi:10.1016/0030-4018(94)90246-1
[8] Bandara, R. I.; Giraldo, A.; Broderick, N. G. R.; Krauskopf, B., Infinitely many multipulse solitons of different symmetry types in the nonlinear Schrödinger equation with quartic dispersion, Phys. Rev. A, 103, 063514 (2021) · doi:10.1103/PhysRevA.103.063514
[9] Akhmediev, N. N.; Buryak, A., Interactions of solitons with oscillating tails, Opt. Commun., 121, 109-114 (1995) · doi:10.1016/0030-4018(95)00548-7
[10] Parker, R.; Aceves, A., Multi-pulse solitary waves in a fourth-order nonlinear Schrödinger equation, Physica D, 422, 132890 (2021) · Zbl 1490.35441 · doi:10.1016/j.physd.2021.132890
[11] Devaney, R. L., Reversible diffeomorphisms and flows, Trans. Am. Math. Soc., 218, 89-113 (1976) · Zbl 0363.58003 · doi:10.1090/S0002-9947-1976-0402815-3
[12] Devaney, R. L., Blue sky catastrophes in reversible and Hamiltonian systems, Indiana Univ. Math. J., 26, 247-263 (1977) · Zbl 0362.58006 · doi:10.1512/iumj.1977.26.26018
[13] Champneys, A. R., Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics, Physica D, 112, 158-186 (1998) · Zbl 1194.37154 · doi:10.1016/S0167-2789(97)00209-1
[14] Parra-Rivas, P.; Gomila, D.; Gelens, L.; Knobloch, E., Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion, Phys. Rev. E, 97, 042204 (2018) · doi:10.1103/PhysRevE.97.042204
[15] Champneys, A. R.; Spence, A., Hunting for homoclinic orbits in reversible systems: A shooting technique, Adv. Comput. Math., 1, 81-108 (1993) · Zbl 0824.65080 · doi:10.1007/BF02070822
[16] Homburg, A. J. and Sandstede, B., “Homoclinic and heteroclinic bifurcations in vector fields,” in Handbook of Dynamical Systems, edited by H. Broer, B. Hasselblatt, and F. Takens (Elsevier, Amsterdam, 2010), Vol. 3, pp. 379-524. · Zbl 1243.37024
[17] Amick, C. J.; Toland, J. F., Homoclinic orbits in the dynamic phase-space analogy of an elastic strut, Eur. J. Appl. Math., 3, 97-114 (1992) · Zbl 0755.73023 · doi:10.1017/S0956792500000735
[18] Champneys, A. R.; Toland, J. F., Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems, Nonlinearity, 6, 665 (1993) · Zbl 0789.58035 · doi:10.1088/0951-7715/6/5/002
[19] Woods, P. D.; Champneys, A. R., Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation, Physica D, 129, 147-170 (1999) · Zbl 0952.37009 · doi:10.1016/S0167-2789(98)00309-1
[20] Burke, J.; Knobloch, E., Snakes and ladders: Localized states in the Swift-Hohenberg equation, Phys. Lett. A, 360, 681-688 (2007) · Zbl 1236.35144 · doi:10.1016/j.physleta.2006.08.072
[21] Alexander, T. J.; Tsolias, G. A.; Demirkaya, A.; Decker, R. J.; De Sterke, C. M.; Kevrekidis, P. G., Dark solitons under higher-order dispersion, Opt. Lett., 47, 1174-1177 (2022) · doi:10.1364/OL.450835
[22] Homburg, A. J.; Lamb, J. S. W., Symmetric homoclinic tangles in reversible systems, Ergod. Theory Dyn. Syst., 26, 1769-1789 (2006) · Zbl 1132.37013 · doi:10.1017/S0143385706000472
[23] Krauskopf, B.; Osinga, H. M.; Galán-Vioque, J., Numerical Continuation Methods for Dynamical Systems (2007), Springer · Zbl 1117.65005
[24] Krauskopf, B.; Rieß, T., A Lin’s method approach to finding and continuing heteroclinic connections involving periodic orbits, Nonlinearity, 21, 1655 (2008) · Zbl 1163.34028 · doi:10.1088/0951-7715/21/8/001
[25] Galan-Vioque, J.; Almaraz, F. J. M.; Macías, E. F., Continuation of periodic orbits in symmetric Hamiltonian and conservative systems, Eur. Phys. J. Top., 223, 2705-2722 (2014) · doi:10.1140/epjst/e2014-02287-6
[26] Doedel, E. J.; Oldeman, B. E., AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (2010), Department of Computer Science, Concordia University: Department of Computer Science, Concordia University, Montreal
[27] Champneys, A. R.; Kuznetsov, Y. A.; Sandstede, B., A numerical toolbox for homoclinic bifurcation analysis, Int. J. Bifurcation Chaos Appl. Sci. Eng., 6, 867-887 (1996) · Zbl 0877.65058 · doi:10.1142/S0218127496000485
[28] Bandara, R. I., Giraldo, A., Broderick, N. G. R., and Krauskopf, B., “Surfaces of period orbits and their bifurcations in the nonlinear Schrödinger equation with quartic dispersion” (2023) (unpublished).
[29] Palis, J. J.; De Melo, W., Geometric Theory of Dynamical Systems: An Introduction (2012), Springer Science & Business Media
[30] Champneys, A. R., Homoclinic orbits in reversible systems II: Multi-bumps and saddle-centres, CWI Q., 12, 185-212 (1999) · Zbl 0998.37011
[31] Elvin, A. J.; Laing, C. R.; McLachlan, R. I.; Roberts, M. G., Exploiting the Hamiltonian structure of a neural field model, Physica D, 239, 537-546 (2010) · Zbl 1203.37034 · doi:10.1016/j.physd.2009.08.004
[32] Bakrani, S.; Lamb, J. S. W.; Turaev, D.
[33] Knobloch, J.; Lamb, J. S. W.; Webster, K. N., Using Lin’s method to solve Bykov’s problems, Differ. Equ., 257, 2984-3047 (2014) · Zbl 1312.34083 · doi:10.1016/j.jde.2014.06.006
[34] Wilczak, D.; Zgliczyński, P., Heteroclinic connections between periodic orbits in planar restricted circular three-body problem—A computer assisted proof, Commun. Math. Phys., 234, 37-75 (2003) · Zbl 1055.70005 · doi:10.1007/s00220-002-0709-0
[35] Kapela, T.; Mrozek, M.; Wilczak, D.; Zgliczyński, P., CAPD: DynSys: A flexible C++ toolbox for rigorous numerical analysis of dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 101, 105578 (2021) · Zbl 1473.37004 · doi:10.1016/j.cnsns.2020.105578
[36] Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J., Evans function computation for the stability of travelling waves, Philos. Trans. R. Soc. A, 376, 20170184 (2018) · Zbl 1402.65052 · doi:10.1098/rsta.2017.0184
[37] Runge, A. F. J.; Qiang, Y. L.; Alexander, T. J.; Rafat, M. Z.; Hudson, D. D.; Blanco-Redondo, A.; de Sterke, C. M., Infinite hierarchy of solitons: Interaction of Kerr nonlinearity with even orders of dispersion, Phys. Rev. Res., 3, 013166 (2021) · doi:10.1103/PhysRevResearch.3.013166
[38] Kominis, Y.; Hizanidis, K. T., Power dependent soliton location and stability in complex photonic structures, Opt. Express, 16, 12124-12138 (2008) · doi:10.1364/OE.16.012124
[39] Kominis, Y., Bright, dark, antidark, and kink solitons in media with periodically alternating sign of nonlinearity, Phys. Rev. A, 87, 063849 (2013) · doi:10.1103/PhysRevA.87.063849
[40] Dragonas, K.; Kominis, Y., Solitary wave formation under the interplay between spatial inhomogeneity and nonlocality, Phys. Rev. E, 100, 052209 (2019) · doi:10.1103/PhysRevE.100.052209
[41] Kominis, Y.; Cuevas-Maraver, J.; Kevrekidis, P. G.; Frantzeskakis, D. J.; Bountis, A., Continuous families of solitary waves in non-symmetric complex potentials: A Melnikov theory approach, Chaos, Solitons Fractals, 118, 222-233 (2019) · Zbl 1442.35064 · doi:10.1016/j.chaos.2018.11.021
[42] Olshanii, M.; Choi, M. S.; Dunjko, V.; Feiguin, A.; Perrin, H.; Ruhl, J.; Aveline, D., Three-dimensional Gross-Pitaevskii solitary waves in optical lattices: Stabilization using the artificial quartic kinetic energy induced by lattice shaking, Phys. Lett. A, 380, 177-181 (2016) · Zbl 1377.82046 · doi:10.1016/j.physleta.2015.09.008
[43] Campbell, D. K.; Flach, S.; Kivshar, Y. S., Localizing energy through nonlinearity and discreteness, Phys. Today, 57, 43-49 (2004) · doi:10.1063/1.1650069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.