×

Implicit analytic solutions for a nonlinear fractional partial differential beam equation. (English) Zbl 1450.74023

Summary: Analytic solutions in implicit form are derived for a nonlinear partial differential equation (PDE) with fractional derivative elements, which can model the dynamics of a deterministically excited Euler-Bernoulli beam resting on a viscoelastic foundation. Specifically, the initial-boundary value problem for the corresponding PDE is reduced to an initial value problem for a nonlinear ordinary differential equation in a Hilbert space. Next, by employing the cosine and sine families of operators, a variation of parameters representation of the solution map is introduced. Due to the presence of a nonlinear term, a local fixed point theorem is employed to prove the local existence and uniqueness of the solution. Relying on the regularity properties of cosine and sine families, taking into account the form of the nonlinear term, and considering the properties of the fractional derivative, the solution map of the abstract problem is cast into a derivative-free analytic solution in implicitform for the initial-boundary value problem. Results corresponding to the limiting purely elastic and purely viscous cases are also provided. The herein developed technique and derived implicit form solutions can be construed as generalizations of available results in the literature to account for fractional derivative elements. This is of significant importance for the utilization of fractional calculus modeling in modern engineering mechanics, and in viscoelastic material behavior in particular.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H20 Existence of solutions of dynamical problems in solid mechanics
74H25 Uniqueness of solutions of dynamical problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
26A33 Fractional derivatives and integrals

References:

[1] Agrawal, O. P., Stochastic analysis of dynamic systems containing fractional derivatives, J Sound Vib, 247, 5, 927-938 (2001)
[2] Alotta, G.; Di Paola, M.; Failla, G.; Pinnola, F. P., On the dynamics of non-local fractional viscoelastic beams under stochastic agencies, Compos Part B, 137, 102-110 (2018)
[3] Balachandran, K.; Park, J. Y., Existence of solutions of a class of abstract second order nonlinear integrodifferential equations, J Appl Math Stoch Anal, 15, 2, 115-124 (2002) · Zbl 1014.45008
[4] Balasubramaniam, P.; Park, J. Y., Nonlocal cauchy problem for second order stochastic evolution equations in Hilbert spaces, Dyn Syst Appl, 16, 713-728 (2007) · Zbl 1151.34046
[5] Caputo, M., Linear models of dissipation whose Q is almost frequency independent-II, Geophys J Int, 13, 5, 529-539 (1967)
[6] Caputo, M., Elasticitàe dissipazione (1969), Zanichelli: Zanichelli Bologna, Italy
[7] Challamel, N.; Elishakoff, I., A brief history of first-order shear-deformable beam and plate models, Mech Res Commun, 102, 103389 (2019)
[8] Colinas-Armijo, N.; Cutrona, S.; Di Paola, M.; Pirrotta, A., Fractional viscoelastic beam under torsion, Commun Nonlinear Sci, 48, 278-287 (2017) · Zbl 1510.74070
[9] Christensen, R. M., Theory of viscoelasticity: an introduction (1982), Academic Press: Academic Press USA
[10] Di Blasio, G.; Kunisch, K.; Sinestrari, E., Mathematical models for the elastic beam with structural damping, Appl Anal, 48, 1-4, 133-156 (1993) · Zbl 0793.34046
[11] Di Lorenzo, S.; Di Paola, M.; Pinnola, F. P.; Pirrotta, A., Stochastic response of fractionally damped beams, Probab Eng Mech, 35, 37-43 (2014)
[12] Di Matteo, A.; Kougioumtzoglou, I. A.; Pirrotta, A.; Spanos, P. D.; Di Paola, M., Stochastic response determination of nonlinear oscillators with fractional derivatives elements via the wiener path integral, Probab Eng Mech, 38, 127-135 (2014)
[13] Di Matteo, A.; Lo Iacono, F.; Navarra, G.; Pirrotta, A., Innovative modeling of tuned liquid column damper motion, Commun Nonlinear Sci, 23, 1-3, 229-244 (2015)
[14] Di Paola, M.; Heuer, R.; Pirrotta, A., Fractional visco-elastic Euler-Bernoulli beam, Int J Solids Struct, 50, 22-23, 3505-3510 (2013)
[15] Di Paola, M.; Pirotta, A.; Valenza, A., Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results, Mech Mater, 43, 799-806 (2011)
[16] Engel, K. J.; Nagel, R., One-parameter semigroups for linear evolution equation (2000), Springer Verlag: Springer Verlag New York · Zbl 0952.47036
[17] Fattorini, H. O., Ordinary differential equations in linear topological spaces, i,, J Differ Equ, 5, 72-105 (1968) · Zbl 0175.15101
[18] Fattorini, H. O., Ordinary differential equations in linear topological spaces, II, J. Differ Equ, 6, 50-70 (1969) · Zbl 0181.42801
[19] Fitzgibbon, W. E., Global existence and boundedness of solutions to the extensible beam equation, SIAM J Math Anal, 13, 739-745 (1982) · Zbl 0506.73057
[20] Fragkoulis, V. C.; Kougioumtzoglou, I. A.; Pantelous, A. A.; Beer, M., Non-stationary response statistics of nonlinear oscillators with fractional derivative elements under evolutionary stochastic excitation, Nonlinear Dyn, 97, 4, 2291-2303 (2019) · Zbl 1430.35228
[21] Gemant, A., A method of analyzing experimental results obtained from elasto-viscous bodies, Physics, 7, 8, 311-317 (1936)
[22] Gao, D. Y.; Machalová, J.; Netuka, H., Mixed finite element solutions to contact problems of nonlinear gao beam on elastic foundation, Nonlinear Anal Real, 22, 537-550 (2015) · Zbl 1326.74075
[23] Kougioumtzoglou, I. A.; Spanos, P. D., Harmonic wavelets based response evolutionary power spectrum determination of linear and nonlinear oscillators with fractional derivative elements, Int J Nonlinear Mech, 80, 66-75 (2016)
[24] Latif, A., Banach contraction principle and its generalizations, (Almezel, S.; Ansari, Q.; Khamsi, M., Topics in fixed point theory (2014), Springer: Springer Cham), 33-64 · Zbl 1320.54036
[25] Liaskos, K. B.; Pantelous, A. A.; Stratis, I. G., Linear stochastic degenerate Sobolev equations and applications, Int J Control, 88, 12, 2538-2553 (2015) · Zbl 1335.93119
[26] Liaskos, K. B.; Stratis, I. G.; Pantelous, A. A., Stochastic degenerate Sobolev equations: well posedness and exact controllability, Math Method Appl Sci, 41, 3, 1025-1032 (2018) · Zbl 1390.60242
[27] Liaskos, K. B.; Pantelous, A. A.; Kougioumtzoglou, I. A.; Meimaris, A. T., Implicit analytic solutions for the linear stochastic partial differential beam equation with fractional derivative terms, Syst Control Lett, 121, 38-49 (2018) · Zbl 1408.60052
[28] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, (Carpinter, A.; Mainardi, F., Fractals and fractional calculus in continuum mechanics (1997), Springer-Verlag: Springer-Verlag New York), 291-348 · Zbl 0917.73004
[29] Mahmudov, N. I.; McKibben, M. A., Abstract second-order damped mckean-vlasov stochastic evolution equations, Stoch Anal Appl, 24, 2, 303-328 (2006) · Zbl 1102.35044
[30] Nutting, P. G., A new general law of deformation, J Frankl. I, 191, 5, 679-685 (1921)
[31] Pazy, A., Semigroups of linear operators and applications to partial differential equations (1983), Springer Verlag: Springer Verlag New York · Zbl 0516.47023
[32] Pirrotta, A.; Cutrona, S.; Di Lorenzo, S., Fractional visco-elastic timoshenko beam from elastic Euler-Bernoulli beam, Acta Mech, 226, 1, 179-189 (2015) · Zbl 1326.74077
[33] Pirrotta, A.; Cutrona, S.; Di Lorenzo, S.; Matteo, A. D., Fractional visco-elastic timoshenko beam deflection via single equation, Int J Numer Meth Eng, 104, 9, 869-886 (2015) · Zbl 1352.74155
[34] Rao, S. S., Mechanical vibrations (1995), Addison Wesley · Zbl 0714.73050
[35] Sarkar, S.; Reddy, J., Exploring the source of non-locality in the Euler-Bernoulli and timoshenko beam models, Int J Eng Sci, 104, 110-115 (2016) · Zbl 1423.74513
[36] Spanos, P. D.; Malara, G., Nonlinear random vibrations of beams with fractional derivative elements, ASCE J Eng Mech, 140, 9, 04014069 (2014)
[37] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun Nonlinear Sci, 64, 213-231 (2018) · Zbl 1509.26005
[38] Travis, C. C.; Webb, G. F., Cosine families and abstract nonlinear second order differential equations, Acta Math Acad Sci Hung, 32, 75-96 (1978) · Zbl 0388.34039
[39] Travis, C. C.; Webb, G. F., Second order differential equations in Banach space, Proceedings international symposium on nonlinear equations in abstract spaces, 331-361 (1987), Academic Press: Academic Press New York · Zbl 0455.34044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.