×

Log-Sobolev inequality for the \(\varphi^4_2\) and \(\varphi^4_3\) measures. (English) Zbl 07818724

Summary: The continuum \(\varphi^4_2\) and \(\varphi^4_3\) measures are shown to satisfy a log-Sobolev inequality uniformly in the lattice regularisation under the optimal assumption that their susceptibility is bounded. In particular, this applies to all coupling constants in any finite volume, and uniformly in the volume in the entire high temperature phases of the \(\varphi^4_2\) and \(\varphi^4_3\) models. The proof uses a general criterion for the log-Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron-Frobenius theorem, and bounds on the susceptibilities of the \(\varphi^4_2\) and \(\varphi^4_3\) measures obtained using skeleton inequalities.
© 2023 The Authors. Communications on Pure and Applied Mathematics published by Courant Institute of Mathematics and Wiley Periodicals LLC.

MSC:

81P05 General and philosophical questions in quantum theory
26E70 Real analysis on time scales or measure chains
35E05 Fundamental solutions to PDEs and systems of PDEs with constant coefficients
74F05 Thermal effects in solid mechanics

References:

[1] D.Bakry, I.Gentil, and M.Ledoux, Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften, vol. 348, Springer, Cham, 2014. Available at: https://doi.org/10.1007/978‐3‐319‐00227‐9. · Zbl 1376.60002 · doi:10.1007/978‐3‐319‐00227‐9
[2] N.Barashkov and M.Gubinelli, A variational method for \(\Phi^4_3\), Duke Math. J.169 (2020), no. 17, 3339-3415. Available at: https://doi.org/10.1215/00127094‐2020‐0029. · Zbl 1508.81928 · doi:10.1215/00127094‐2020‐0029
[3] R.Bauerschmidt and T.Bodineau, Log‐Sobolev inequality for the continuum sine‐Gordon model, Comm. Pure Appl. Math.74 (2021), no. 10, 2064-2113. 1907.12308. Available at: https://doi.org/10.1002/cpa.21926. · Zbl 1475.60144 · doi:10.1002/cpa.21926
[4] R.Bauerschmidt and B.Dagallier, Log‐Sobolev inequality for near critical Ising models, Comm. Pure Appl. Math. (2023). https://doi.org/10.1002/cpa.22173. · Zbl 07818724 · doi:10.1002/cpa.22173
[5] T.Bodineau and B.Helffer, The log‐Sobolev inequality for unbounded spin systems, J. Funct. Anal.166 (1999), no. 1, 168-178. Available at: https://doi.org/10.1006/jfan.1999.3419. · Zbl 0972.82035 · doi:10.1006/jfan.1999.3419
[6] H.Brascamp and E.Lieb, On extensions of the Brunn‐Minkowski and Prékopa‐Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, Springer, Berlin, Heidelberg, 2002, pp. 441-464. Available at: https://doi.org/10.1007/978‐3‐642‐55925‐9_36. · doi:10.1007/978‐3‐642‐55925‐9_36
[7] D.Brydges, J.Fröhlich, and A.Sokal, A new proof of the existence and nontriviality of the continuum \(\varphi^4_2\) and \(\varphi^4_3\) quantum field theories, Commun. Math. Phys.91 (1983), no. 2, 141-186. Available at: https://projecteuclid.org/euclid.cmp/1103940528.
[8] D.Brydges, J.Fröhlich, and A.Sokal, The random‐walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities, Commun. Math. Phys.91 (1983), no. 1, 117-139. Available at: https://projecteuclid.org/getRecord?id=euclid.cmp/1103940478.
[9] D.Brydges, J.Fröhlich, and T.Spencer, The random walk representation of classical spin systems and correlation inequalities, Commun. Math. Phys.83 (1982), no. 1, 123-150. Available at: https://projecteuclid.org/getRecord?id=euclid.cmp/1103920749.
[10] R.Catellier and K.Chouk, Paracontrolled distributions and the 3‐dimensional stochastic quantization equation, Ann. Probab.46 (2018), no. 5, 2621-2679. Available at: https://doi.org/10.1214/17‐AOP1235. · Zbl 1433.60048 · doi:10.1214/17‐AOP1235
[11] A.Chandra, T.Gunaratnam, and H.Weber, Phase transitions for \(\phi_3^4\), Commun. Math. Phys.392 (2022), no. 2, 691-782. Available at: https://doi.org/10.1007/s00220‐022‐04353‐6. · Zbl 1494.82016 · doi:10.1007/s00220‐022‐04353‐6
[12] G.Da Prato and A.Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab.31 (2003), no. 4, 1900-1916. Available at: https://doi.org/10.1214/aop/1068646370. · Zbl 1071.81070 · doi:10.1214/aop/1068646370
[13] J.Ding, J.Song, and R.Sun, A new correlation inequality for Ising models with external fields, Probab. Theory Related Fields186 (2023), 477-491. Available at: https://doi.org/10.1007/s00440-022-01132-1. · Zbl 1512.82009 · doi:10.1007/s00440-022-01132-1
[14] J.Fröhlich, B.Simon, and T.Spencer, Infrared bounds, phase transitions and continuous symmetry breaking, Commun. Math. Phys.50 (1976), no. 1, 79-95.
[15] J.Glimm and A.Jaffe, Quantum physics: A functional integral point of view, 2nd ed., Springer‐Verlag, 1987.
[16] J.Glimm, A.Jaffe, and T.Spencer, Phase transitions in \(P(\varphi )_2\) quantum fields, Bull. Amer. Math. Soc.82 (1976), no. 5, 713-715. · Zbl 0367.60113
[17] M.Gubinelli and M.Hofmanová, A PDE construction of the Euclidean \(\phi_3^4\) quantum field theory, Commun. Math. Phys.384 (2021), no. 1, 1-75. Available at: https://doi.org/10.1007/s00220‐021‐04022‐0. · Zbl 1514.81190 · doi:10.1007/s00220‐021‐04022‐0
[18] M.Gubinelli, P.Imkeller, and N.Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi3 (2015), e6, 75. Available at: https://doi.org/10.1017/fmp.2015.2. · Zbl 1333.60149 · doi:10.1017/fmp.2015.2
[19] A.Guionnet and B.Zegarlinski, Lectures on logarithmic Sobolev inequalities, in Séminaire de Probabilités, XXXVI, Lecture Notes in Math., vol. 1801, Springer, Berlin, 2003, pp. 1-134. Available at: https://doi.org/10.1007/978‐3‐540‐36107‐7_1. · Zbl 1125.60111 · doi:10.1007/978‐3‐540‐36107‐7_1
[20] M.Hairer, A theory of regularity structures, Invent. Math.198 (2014), no. 2, 269-504. Available at: https://doi.org/10.1007/s00222‐014‐0505‐4. · Zbl 1332.60093 · doi:10.1007/s00222‐014‐0505‐4
[21] M.Hairer, Regularity structures and the dynamical \(\Phi^4_3\) model, in Current developments in mathematics 2014, Int. Press, Somerville, MA, 2016, pp. 1-49. · Zbl 1506.60062
[22] M.Hairer and K.Matetski, Discretisations of rough stochastic PDEs, Ann. Probab.46 (2018), no. 3, 1651-1709. Available at: https://doi.org/10.1214/17‐AOP1212. · Zbl 1406.60094 · doi:10.1214/17‐AOP1212
[23] M.Hairer and P.Schönbauer, The support of singular stochastic PDEs, Forum Math. Pi, (2022), 10, E1. Available at: https://doi.org/10.1017/fmp.2021.18. · Zbl 1490.60186 · doi:10.1017/fmp.2021.18
[24] A.Kupiainen, Renormalization group and stochastic PDEs, Ann. Henri Poincaré17 (2016), no. 3, 497-535. Available at: https://doi.org/10.1007/s00023‐015‐0408‐y. · Zbl 1347.81063 · doi:10.1007/s00023‐015‐0408‐y
[25] M.Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, in Séminaire de Probabilités, XXXV, Lecture Notes in Math., vol. 1755, Springer, Berlin, 2001, pp. 167-194. Available at: https://doi.org/10.1007/978‐3‐540‐44671‐2_13. · Zbl 0979.60096 · doi:10.1007/978‐3‐540‐44671‐2_13
[26] A.Moinat and H.Weber, Space‐time localisation for the dynamic \(\Phi^4_3\) model, Comm. Pure Appl. Math.73 (2020), no. 12, 2519-2555. Available at: https://doi.org/10.1002/cpa.21925. · Zbl 1455.35309 · doi:10.1002/cpa.21925
[27] J.‐C.Mourrat and H.Weber, The dynamic \(\Phi^4_3\) model comes down from infinity, Commun. Math. Phys.356 (2017), no. 3, 673-753. Available at: https://doi.org/10.1007/s00220‐017‐2997‐4. · Zbl 1384.81068 · doi:10.1007/s00220‐017‐2997‐4
[28] J.‐C.Mourrat and H.Weber, Global well‐posedness of the dynamic \(\Phi^4\) model in the plane, Ann. Probab.45 (2017), no. 4, 2398-2476. Available at: https://doi.org/10.1214/16‐AOP1116. · Zbl 1381.60098 · doi:10.1214/16‐AOP1116
[29] J.Polchinski, Renormalization and effective lagrangians, Nuclear Phys. B231 (1984), no. 2, 269-295. Available at: https://www.sciencedirect.com/science/article/pii/0550321384902876.
[30] B.Simon, The \(P(\phi )_2\) Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, 1974. · Zbl 1175.81146
[31] B.Simon and R.Griffiths, The \((\phi^4)_2\) field theory as a classical Ising model, Commun. Math. Phys.33 (1973), 145-164. Available at: http://projecteuclid.org/euclid.cmp/1103859251.
[32] P.Tsatsoulis and H.Weber, Spectral gap for the stochastic quantization equation on the 2‐dimensional torus, Ann. Inst. Henri Poincaré Probab. Stat.54 (2018), no. 3, 1204-1249. Available at: https://doi.org/10.1214/17‐AIHP837. · Zbl 1403.81030 · doi:10.1214/17‐AIHP837
[33] N.Yoshida, The log‐Sobolev inequality for weakly coupled lattice fields, Probab. Theory Related Fields115 (1999), no. 1, 1-40. Available at: https://doi.org/10.1007/s004400050235. · Zbl 0948.60095 · doi:10.1007/s004400050235
[34] B.Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Commun. Math. Phys.175 (1996), no. 2, 401-432. Available at: http://projecteuclid.org/euclid.cmp/1104275930. · Zbl 0844.46050
[35] R.Zhu and X.Zhu, Dirichlet form associated with the \(\Phi^4_3\) model, Electron. J. Probab.23 (2018), Paper No. 78, 31. Available at: https://doi.org/10.1214/18‐EJP207. · Zbl 1415.60082 · doi:10.1214/18‐EJP207
[36] R.Zhu and X.Zhu, Lattice approximation to the dynamical \(\Phi_3^4\) model, Ann. Probab.46 (2018), no. 1, 397-455. Available at: https://doi.org/10.1214/17‐AOP1188. · Zbl 1393.82014 · doi:10.1214/17‐AOP1188
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.