×

Concentration estimates for slowly time-dependent singular SPDEs on the two-dimensional torus. (English) Zbl 1540.60141

This article focuses on slowly time-dependent singular stochastic partial differential equations on the two-dimensional torus, driven by weak space-time white noise, and renormalised in the Wick sense. The main results are the Wick powers of the stochastic convolution remain concentrated, with high probability, in a neighborhood of a stable equilibrium branch of the equation without noise, measured in appropriate Besov and Hölder norms. The authors also discuss the particular situation of a dynamic pitchfork bifurcation. These results extend to the two-dimensional torus those obtained in [N. Berglund and B. Gentz, Probab. Theory Relat. Fields 122, No. 3, 341–388 (2002; Zbl 1008.37031)] for finite-dimensional SDEs, and in [N. Berglund and R. Nader, Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 1, 348–387 (2023; Zbl 1517.60072)] for SPDEs on the one-dimensional torus.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60G17 Sample path properties
34F15 Resonance phenomena for ordinary differential equations involving randomness
37H20 Bifurcation theory for random and stochastic dynamical systems

References:

[1] Nils Berglund, An introduction to singular stochastic PDEs., EMS Press, 2022. MathSciNet: MR4458524 · Zbl 1511.35001
[2] Nils Berglund, Giacomo Di Gesù, and Hendrik Weber, An Eyring-Kramers law for the stochastic Allen-Cahn equation in dimension two, Electron. J. Probab. 22 (2017), 1-27. MathSciNet: MR3646067 · Zbl 1362.60059
[3] Nils Berglund and Barbara Gentz, The effect of additive noise on dynamical hysteresis, Nonlinearity 15 (2002), no. 3, 605-632. MathSciNet: MR1901095 · Zbl 1073.37061
[4] Nils Berglund and Barbara Gentz, Pathwise description of dynamic pitchfork bifurcations with additive noise, Probab. Theory Related Fields 122 (2002), no. 3, 341-388. MathSciNet: MR1892851 (2003a:37070) · Zbl 1008.37031
[5] Nils Berglund and Barbara Gentz, A sample-paths approach to noise-induced synchronization: stochastic resonance in a double-well potential, Ann. Appl. Probab. 12 (2002), no. 4, 1419-1470. MathSciNet: MR1936599 (2003h:60083) · Zbl 1023.60052
[6] Nils Berglund and Barbara Gentz, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191 (2003), 1-54. MathSciNet: MR1973280 · Zbl 1053.34048
[7] Nils Berglund and Barbara Gentz, Noise-induced phenomena in slow-fast dynamical systems. A sample-paths approach, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2006. MathSciNet: MR2197663 · Zbl 1098.37049
[8] Nils Berglund and Barbara Gentz, Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’ law and beyond, Electron. J. Probab. 18 (2013), no. 24, 58. MathSciNet: MR3035752 · Zbl 1285.60060
[9] Nils Berglund and Rita Nader, Stochastic resonance in stochastic PDEs, Stoch. Partial Differ. Equ., Anal. Comput. 11 (2023), no. 1, 348-387 (English). MathSciNet: MR4563703 · Zbl 1517.60072
[10] Gérard Bourdaud, Le calcul symbolique dans certaines algèbres de type Sobolev, Recent developments in fractals and related fields, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2010, pp. 131-144. MathSciNet: MR2742991
[11] Yvain Bruned, Ajay Chandra, Ilya Chevyrev, and Martin Hairer, Renormalising SPDEs in regularity structures, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 3, 869-947 (English). MathSciNet: MR4210726 · Zbl 1465.60057
[12] Yvain Bruned, Martin Hairer, and Lorenzo Zambotti, Renormalisation of stochastic partial differential equations, Eur. Math. Soc. Newsl. 115 (2020), 7-11 (English). MathSciNet: MR4226805 · Zbl 1447.35399
[13] David C. Brydges, Jonathan Dimock, and Thomas. R. Hurd, The short distance behavior of \(( \operatorname{\Phi}_3^4)\), Commun. Math. Phys. 172 (1995), no. 1, 143-186 (English). MathSciNet: MR1346375 · Zbl 0858.60095
[14] Ajay Chandra and Martin Hairer, An analytic BPHZ theorem for regularity structures, Preprint arXiv:1612.08138, 2016.
[15] Giuseppe Da Prato and Arnaud Debussche, Strong solutions to the stochastic quantization equations, Ann. Probab. 31 (2003), no. 4, 1900-1916. MathSciNet: MR2016604 · Zbl 1071.81070
[16] Giuseppe Da Prato and Luciano Tubaro, Wick powers in stochastic PDEs: an introduction, Tech. Report UTM 711, University of Trento, 2007.
[17] Vasilis Dakos, Marten Scheffer, Egbert H. van Nes, Viktor Brovkin, Vladimir Petoukhov, and Hermann Held, Slowing down as an early warning signal for abrupt climate change, Proc. Natl. Acad. Sci. USA 105 (2008), no. 38, 14308-14312.
[18] Máté Gerencsér and Martin Hairer, A solution theory for quasilinear singular SPDEs, Commun. Pure Appl. Math. 72 (2019), no. 9, 1983-2005 (English). MathSciNet: MR3987723 · Zbl 1458.60077
[19] Máté Gerencsér and Martin Hairer, Boundary renormalisation of SPDEs, Commun. Partial Differ. Equations 47 (2022), no. 10, 2070-2123 (English). MathSciNet: MR4492924 · Zbl 1504.60098
[20] Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi 3 (2015), e6, 75. MathSciNet: MR3406823 · Zbl 1333.60149
[21] Richard Haberman, Slowly varying jump and transition phenomena associated with algebraic bifurcation problems, SIAM J. Appl. Math. 37 (1979), no. 1, 69-106. MathSciNet: MR0536304 · Zbl 0417.34028
[22] Martin Hairer, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269-504. MathSciNet: MR3274562 · Zbl 1332.60093
[23] Martin Hairer, Introduction to Malliavin calculus, Lecture notes, available athttp://hairer.org/notes/Malliavin.pdf, 2021.
[24] Martin Hairer and Cyril Labbé, A simple construction of the continuum parabolic Anderson model on \(\mathbf{R}^2\), Electron. Commun. Probab. 20 (2015), 11 (English), Id/No 43. MathSciNet: MR3358965 · Zbl 1332.60094
[25] Martin Hairer and Jonathan Mattingly, The strong Feller property for singular stochastic PDEs, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 3, 1314-1340. MathSciNet: MR3825883 · Zbl 1426.60088
[26] Martin Hairer and Hendrik Weber, Large deviations for white-noise driven, nonlinear stochastic PDEs in two and three dimensions, Ann. Fac. Sci. Toulouse Math. (6) 24 (2015), no. 1, 55-92. MathSciNet: MR3325951 · Zbl 1319.60141
[27] Svante Janson, Gaussian Hilbert spaces, reprint of the 1997 hardback ed. ed., Camb. Tracts Math., vol. 129, Cambridge: Cambridge University Press, 2008 (English). MathSciNet: MR1474726 · Zbl 1143.60005
[28] Christian Kuehn, A mathematical framework for critical transitions: normal forms, variance and applications, J. Nonlinear Sci. 23 (2013), no. 3, 457-510. MathSciNet: MR3067587 · Zbl 1282.34062
[29] Jean-Christophe Mourrat and Hendrik Weber, Global well-posedness of the dynamic \(\operatorname{\Phi}^4\) model in the plane, Ann. Probab. 45 (2017), no. 4, 2398-2476. MathSciNet: MR3693966 · Zbl 1381.60098
[30] David Nualart, The Malliavin calculus and related topics, vol. 1995, Springer, 2006. MathSciNet: MR1344217 · Zbl 0837.60050
[31] Giovanni Peccati and Murad S. Taqqu, Wiener chaos: moments, cumulants and diagrams, Bocconi & Springer Series, vol. 1, Springer, Milan; Bocconi University Press, Milan, 2011, A survey with computer implementation, Supplementary material available online. MathSciNet: MR2791919 · Zbl 1231.60003
[32] Lev S. Pontryagin and L.V. Rodygin, Approximate solution of a system of ordinary differential equations involving a small parameter in the derivatives, Soviet Math. Dokl. 1 (1960), 237-240. MathSciNet: MR0121547 · Zbl 0117.04803
[33] Michael Röckner, Rongchan Zhu, and Xiangchan Zhu, Ergodicity for the stochastic quantization problems on the 2D-torus, Comm. Math. Phys. 352 (2017), no. 3, 1061-1090. MathSciNet: MR3631399 · Zbl 1376.81045
[34] Michael Röckner, Rongchan Zhu, and Xiangchan Zhu, Restricted Markov uniqueness for the stochastic quantization of \(P ( \operatorname{\Phi} )_2\) and its applications, J. Funct. Anal. 272 (2017), no. 10, 4263-4303. MathSciNet: MR3626040 · Zbl 1405.60096
[35] Marten Scheffer, Jori Bascompte, William A. Brock, Victor Brovkhin, Stephen R. Carpenter, Vasilis Dakos, Hermann Held, Egbert H. van Nes, Max Rietkerk, and George Sugihara, Early-warning signals for critical transitions, Nature 461 (2009), 53-59.
[36] Andreĭ Nikolaevich Tikhonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sbornik N. S. 31 (1952), 575-586. MathSciNet: MR0055515
[37] Pavlos Tsatsoulis and Hendrik Weber, Spectral gap for the stochastic quantization equation on the 2-dimensional torus, Ann. Inst. H. Poincar�� Probab. Statist. 54 (2018), no. 3, 1204-1249, arXiv:1609.08447. MathSciNet: MR3825880 · Zbl 1403.81030
[38] Pavlos Tsatsoulis and Hendrik Weber, Exponential loss of memory for the 2-dimensional Allen-Cahn equation with small noise, Probability Theory and Related Fields volume 177 (2020), 257-322, arXiv:1808.04171. MathSciNet: MR4095014 · Zbl 1451.60075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.