×

Lieb-Thirring inequalities for an effective Hamiltonian of bilayer graphene. (English) Zbl 1484.35297

Summary: Combining the methods of J.-C. Cuenin [Ann. Henri Poincaré 20, No. 5, 1501–1516 (2019; Zbl 1412.35205)] and A. Borichev et al. [Bull. Lond. Math. Soc. 41, No. 1, 117–123 (2009; Zbl 1175.30007); Rev. Mat. Iberoam. 34, No. 3, 1153–1176 (2018; Zbl 1401.30004)], we obtain the so-called Lieb-Thirring inequalities for non-selfadjoint perturbations of an effective Hamiltonian for bilayer graphene.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
30C35 General theory of conformal mappings
47A75 Eigenvalue problems for linear operators

References:

[1] C. Bennett and R. Sharpley, Interpolation of operators. Pure and Applied Mathemat-ics, 129. Academic Press, Boston, MA, 1988. MR 0928802 Zbl 0647.46057 · Zbl 0647.46057
[2] J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, 223. Springer-Verlag, Berlin etc., 1976. MR 0482275 Zbl 0344.46071 · Zbl 0344.46071
[3] M. Birman, On the spectrum of singular boundary-value problems. Mat. Sb. N.S. 55(97) (1961), 125-174, in Russian. English translation, Amer. Math. Soc. Trans. 53 (1966), 23-80. MR 0142896 Zbl 0174.42502
[4] A. Borichev, L. Golinskii, and S. Kupin, A Blaschke-type condition and its applica-tion to complex Jacobi matrices. Bull. Lond. Math. Soc. 41 (2009), no. 1, 117-123. MR 2481997 Zbl 1175.30007 · Zbl 1175.30007
[5] A. Borichev, L. Golinskii, and S. Kupin, On zeros of analytic functions satisfying non-radial growth conditions. Rev. Mat. Iberoam. 34 (2018), no. 3, 1153-1176. MR 3850283 Zbl 1401.30004 · Zbl 1401.30004
[6] J.-C. Cuenin, Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials. J. Funct. Anal. 272 (2017), no. 7, 2987-3018. MR 3608659 Zbl 06686614 · Zbl 1436.47012
[7] J.-C. Cuenin, Eigenvalue estimates for bilayer graphene. Ann. Henri Poincaré 20 (2019), no. 5, 1501-1516. MR 3942229 Zbl 1412.35205 · Zbl 1412.35205
[8] J.-C. Cuenin, A. Laptev, and C. Tretter, Eigenvalue estimates for non-selfadjoint Dirac operators on the real line. Ann. Henri Poincaré 15 (2014), no. 4, 707-736. MR 3177918 Zbl 1287.81050 · Zbl 1287.81050
[9] J.-C. Cuenin and P. Siegl, Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications. Lett. Math. Phys. 108 (2018), no. 7, 1757-1778. MR 3802729 Zbl 1402.34087 · Zbl 1402.34087
[10] J.-C. Cuenin, C. E. Kenig, L p resolvent estimates for magnetic Schrödinger operators with unbounded background fields. Comm. Part. Diff. Eq. 42 (2017), no. 2, 235-260. MR 3615545 Zbl 1372.35257 · Zbl 1372.35257
[11] J.-C. Cuenin, Estimates on complex eigenvalues for Dirac operators on the half-line. Integral Equations Operator Theory 79 (2014), no. 3, 377-388. MR 3216811 Zbl 1293.81020 · Zbl 1293.81020
[12] L. Cossetti, Uniform resolvent estimates and absence of eigenvalues for Lamé op-erators with complex potentials. J. Math. Anal. Appl. 455 (2017), no. 1, 336-360. MR 3665103 Zbl 1375.35103 · Zbl 1375.35103
[13] M. Demuth, M. Hansmann, and G. Katriel, On the discrete spectrum of non-selfadjoint operators. J. Funct. Anal. 257 (2009), no. 9, 2742-2759. MR 2559715 Zbl 1183.47106 · Zbl 1183.47016
[14] C. Dubuisson, On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator. Integral Equations Operator Theory 78 (2014), no. 2, 249-269. MR 3157981 Zbl 1302.35274 · Zbl 1302.35274
[15] L. Fanelli, D. Krejčiřík, and L. Vega, Spectral stability of Schrödinger operators with subordinated complex potentials. J. Spectr. Theory 8 (2018), no. 2, 575-604. MR 3812810 Zbl 1391.35296 · Zbl 1391.35296
[16] L. Fanelli, D. Krejčiřík, and L. Vega, Absence of eigenvalues of two-dimensional magnetic Schrödinger operators. J. Funct. Anal. 275 (2018), no. 9, 2453-2472. MR 3847475 Zbl 1403.35184 · Zbl 1403.35184
[17] L. Fanelli and D. Krejčiřík, Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators. Lett. Math. Phys. 109 (2019), no. 7, 1473-1485. MR 3961368 Zbl 1419.35138 · Zbl 1419.35138
[18] F. Ferrulli, A. Laptev, and O. Safronov, Eigenvalues of the bilayer graphene operator with a complex valued potential, Anal. Math. Phys. 9 (2019), no. 3, 1535-1546. MR 4014885 Zbl 1419.35138 · Zbl 1429.81034
[19] R. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43 (2011), no. 4, 745-750. MR 2820160 Zbl 1228.35158 · Zbl 1228.35158
[20] R. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials. III. Trans. Amer. Math. Soc. 370 (2018), no. 1, 219-240. MR 3717979 Zbl 1390.35204 · Zbl 1390.35204
[21] R. Frank and J. Sabin, Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates. Amer. J. Math. 139 (2017), no. 6, 1649-1691. MR 3682666 Zbl 1388.42018 · Zbl 1388.42018
[22] R. Frank and B. Simon, Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spectr. Theory 7 (2017), no. 3, 633-658. MR 3713021 Zbl 1386.35061 · Zbl 1386.35061
[23] R. Frank, A. Laptev, and O. Safronov, On the number of eigenvalues of Schrödinger operators with complex potentials. J. Lond. Math. Soc. (2) 94 (2016), no. 2, 377-390. MR 3556444 Zbl 1358.35074 · Zbl 1358.35074
[24] F. Gesztesy, Yu. Latushkin, M. Mitrea, and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications. Russ. J. Math. Phys. 12 (2005), no. 4, 443-471. MR 2201310 Zbl 1201.47028 · Zbl 1201.47028
[25] I. Gohberg and M. Krein, Introduction to the theory of linear nonselfadjoint oper-ators. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, 18. American Mathematical Society, Providence, R.I., 1969. MR 0246142 Zbl 0181.13504 · Zbl 0181.13503
[26] Ph. Briet, J.-C. Cuenin, L. Golinskii, and S. Kupin
[27] L. Golinskii and S. Kupin, On discrete spectrum of complex perturbations of finite band Schrödinger operators. In A. Borichev, K. R. Davidson, S. Kupin, G. Pisier, F.-H. Vasilescu, and V. Vasyunin (eds.), Recent trends in analysis. Proceedings of the conference in honor of N. Nikolski. Held at the University of Bordeaux I, Au-gust 31-September 3, 2011. Theta Series in Advanced Mathematics, 16. Theta, Bucharest, 2013, 113-121. MR 3411047 Zbl 1299.35221 · Zbl 1299.35221
[28] L. Golinskii and S. Kupin, S. On complex perturbations of infinite band Schrödinger operators. Methods Funct. Anal. Topology 21 (2015), no. 3, 237-245. MR 3521649 Zbl 1363.34317 · Zbl 1363.34317
[29] L. Golinskii and S. Kupin, A remark on analytic Fredholm alternative. Lett. Math. Phys. 107 (2017), no. 3, 467-474. MR 3606512 Zbl 06715074 · Zbl 06715074
[30] L. Golinskii and S. Kupin, On non-selfadjoint perturbations of infinite band Schrödinger operators and Kato method. In A. Hartmann, K. Kellay, S. Kupin, G. Pisier, D. Timotin, and M. Zarrabi (eds.), Harmonic analysis, function theory, operator theory, and their applications. Proceedings of the International Conference in honour of Jean Esterle held in Bordeaux, June 1-4, 2015. Theta Series in Advanced Mathematics, 19. Theta, Bucharest, 2017, 171-182. MR 3753899 Zbl 1424.35272 · Zbl 1424.35272
[31] A. Hulko, On the number of eigenvalues of the biharmonic operator on R 3 perturbed by a complex potential. Rep. Math. Phys. 81 (2018), no. 3, 373-383. MR 3818310 Zbl 1402.31003 · Zbl 1402.31003
[32] A. Hulko, On the number of eigenvalues of the discrete one-dimensional Dirac oper-ator with a complex potential. Anal. Math. Phys. 9 (2019), no. 1, 639-654. MR 3933561 Zbl 07074243 · Zbl 07074243
[33] L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics in Mathematics. Springer-Verlag, Berlin, 2003. MR 1996773 Zbl 1028.35001
[34] L. Hörmander, The analysis of linear partial differential operators. II. Differential op-erators with constant coefficients. Classics in Mathematics. Springer-Verlag, Berlin, 2005. MR 2108588 Zbl 1062.35004 · Zbl 1062.35004
[35] O. Ibrogimov, D. Krejčiřík, and A. Laptev, Sharp bounds for eigenvalues of bihar-monic operators with complex potentials in low dimensions. arXiv:1903.01810.
[36] T. Kato, Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162 (1966), 258-279. MR 0238119 Zbl 0139.31203 · Zbl 0139.31203
[37] M. Katsnelson, Graphene carbon in two dimensions. Cambridge University Press, Cambridge, MA, 2012.
[38] C. E. Kenig, A. Ruiz, and C. D. Sogge, Uniform Sobolev inequalities and unique con-tinuation for second order constant coefficient differential operators. Duke Math. J. 55 (1987), no. 2, 329-347. MR 0894584 Zbl 0644.35012 · Zbl 0644.35012
[39] Y. Lee and I. Seo, A note on eigenvalue bounds for Schrödinger operators. J. Math. Anal. Appl. 470 (2019), no. 1, 340-347. MR 3865141 Zbl 06958713 · Zbl 1516.35284
[40] E. Lieb and M. Loss, Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, R.I., 2001. MR 1817225 Zbl 0966.26002 · Zbl 0966.26002
[41] H. Mizutani, Eigenvalue bounds for non-self-adjoint Schrödinger operators with the inverse-square potential. J. Spectr. Theory 9 (2019), no. 2, 677-709. MR 3950666 Zbl 1412.35206 · Zbl 1412.35206
[42] C. Muscalu and W. Schlag, Classical and multilinear harmonic analysis. I. Cam-bridge Studies in Advanced Mathematics, 137. Cambridge University Press, Cam-bridge, MA, 2013. MR 3052498 Zbl 1281.42002 · Zbl 1281.42002
[43] Ch. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der Mathe-matischen Wissenschaften, 299. Springer-Verlag, Berlin, 1992. MR 1217706 Zbl 0762.30001 · Zbl 0762.30001
[44] J. Schwinger, On the bound states for a given potential, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 122-129. MR 1217706
[45] B. Simon, Trace ideals and their applications. Mathematical Surveys and Mono-graphs, 120. American Mathematical Society, Providence, R.I., 2005. MR 2154153 Zbl 1074.47001 · Zbl 1074.47001
[46] C. Sogge, Fourier integrals in classical analysis. Cambridge University Press, Cam-bridge, 1993. MR 3645429 Zbl 1361.35005 · Zbl 0783.35001
[47] E. Stein, Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, N.J., 1993. MR 1232192 Zbl 0821.42001 · Zbl 0821.42001
[48] K. Zhu, Operator theory in function spaces. Second edition. Mathematical Sur-veys and Monographs, 138. American Mathematical Society, Providence, R.I., 2007. MR 2311536 Zbl 1123.47001 · Zbl 1123.47001
[49] Jean-Claude Cuenin, Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom e-mail: J.Cuenin@lboro.ac.uk
[50] Institute of Mathematics, University of Munich, Theresien str. 39, 80333 Munich, Germany e-mail: cuenin@math.lmu.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.