×

Imputed quantile tensor regression for near-sited spatial-temporal data. (English) Zbl 1543.62117

Summary: Modern spatial temporal data are collected from sensor networks. Missing data problems are common for this kind of data. Making robust and accurate imputation is important in many applications. There are complex correlations in both spatial and temporal dimensions. Thus, it is even a challenge to model missing spatial-temporal data. In this article, the imputation of missing values is with the help of related covariates. First, we transform the original sensor\(\times\)time observational matrix to a high order tensor by adding an extra temporal dimension. Then we integrate quantile tensor regression with tensor completion. The objective function includes check loss and nuclear norm penalty. An alternating update algorithm combined with alternating direction method of multipliers (ADMM) is developed to solve the objective function. Theoretical properties of the proposed estimator are investigated. Simulation studies show our proposed method is more robust and can get more accurate imputation results. Real data analysis about Beijing’s PM\(_{2.5}\) concentration level is conducted to verify the efficiency of the estimation procedure.

MSC:

62-08 Computational methods for problems pertaining to statistics
Full Text: DOI

References:

[1] Cai, J. F.; Candès, E. J.; Shen, Z., A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20, 1956-1982 (2008) · Zbl 1201.90155
[2] Candès, Emmanuel J.; Tao, Terence, The power of convex relaxation: near-optimal matrix completion, IEEE Trans. Inf. Theory, 56, 2053-2080 (2010) · Zbl 1366.15021
[3] Chen, X.; Sun, L., Low-rank autoregressive tensor completion for multivariate time series forecasting (2020)
[4] Chen, X.; Sun, L., Bayesian temporal factorization for multidimensional time series prediction, IEEE Trans. Pattern Anal. Mach. Intell., 44, 4659-4673 (2021)
[5] Chen, X.; Yang, J.; Sun, L., A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation, Transp. Res., Part C, Emerg. Technol., 117 (2020)
[6] Elsener, A.; van de Geer, S., Robust low-rank matrix estimation, Ann. Stat., 46, 3481-3509 (2018) · Zbl 1412.62068
[7] Van de Geer, S., Least squares estimation with complexity penalties, Math. Methods Stat., 10, 355-374 (2001) · Zbl 1005.62043
[8] Han, P.; Kong, L.; Zhao, J.; Zhou, X., A general framework for quantile estimation with incomplete data, J. R. Stat. Soc. Ser. B, 81, 305-333 (2019) · Zbl 1420.62173
[9] Hastie, T.; Mazumder, R.; Lee, J.; Zadeh, R., Matrix completion and low-rank svd via fast alternating least squares, J. Mach. Learn. Res., 16, 3367-3402 (2014) · Zbl 1352.65117
[10] Ibriga, H. S.; Sun, W. W., Covariate-assisted sparse tensor completion, J. Am. Stat. Assoc. (2022)
[11] Ji, L.; Przemyslaw, M.; Peter, W.; Jieping, Y., Tensor completion for estimating missing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell., 35, 208-220 (2013)
[12] Koenker, R., Quantile Regression (2005), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1111.62037
[13] Koenker, R.; Bassett, G., Regression quantiles, Econometrica, 46, 211-244 (1978)
[14] Lee, L. F.; Yu, J., Estimation of spatial autoregressive panel data models with fixed effects, J. Econom., 154, 165-185 (2010) · Zbl 1431.62643
[15] Li, L.; Zhang, X., Parsimonious tensor response regression, J. Am. Stat. Assoc., 112, 1131-1146 (2017)
[16] Liang, J., Imputed Tensor Regression for Spatial-Temporal Data (2022), School of Statistics, Renmin University of China, Ph.D. thesis
[17] Liu, J.; Musialski, P.; Wonka, P.; Ye, J., Tensor completion for estimating missing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell., 35, 208-220 (2013)
[18] Lock, E. F., Tensor-on-tensor regression, J. Comput. Graph. Stat., 27, 638-647 (2018) · Zbl 07498939
[19] Lu, W.; Zhu, Z.; Lian, H., High-dimensional quantile tensor regression, J. Mach. Learn. Res., 21, 1-31 (2020) · Zbl 1535.62020
[20] Mazumder, R.; Hastie, T.; Tibshirani, R., Spectral regularization algorithms for learning large incomplete matrices, J. Mach. Learn. Res., 11, 2287 (2009) · Zbl 1242.68237
[21] Neelon, B.; Li, F.; Burgette, L. F.; Neelon, S. E., A spatiotemporal quantile regression model for emergency department expenditures, Stat. Med., 34, 2559-2575 (2015)
[22] Negahban, S.; Wainwright, M. J., Estimation of (near) low-rank matrices with noise and high-dimensional scaling, Ann. Stat., 39, 1069-1097 (2011) · Zbl 1216.62090
[23] Koenker, Roger; Chernozhukov, Victor; He, X.; Peng, L., Handbook of Quantile Regression (2017), Chapman & Hall: Chapman & Hall Portland
[24] Srebro, N.; Rennie, J. D.M.; Jaakkola, T., Maximum-margin matrix factorization, Adv. Neural Inf. Process. Syst., 17, 1329-1336 (2004)
[25] Su, L.; Yang, Z., Qml estimation of dynamic panel data models with spatial errors, J. Econom., 185, 230-258 (2015) · Zbl 1331.62486
[26] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58, 267-288 (1996) · Zbl 0850.62538
[27] Yang, Z., Unified m-estimation of fixed-effects spatial dynamic models with short panels, J. Econom., 205, 423-447 (2018) · Zbl 1452.62968
[28] Yu, J.; de Jong, R.; fei Lee, L., Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and t are large, J. Econom., 146, 118-134 (2008) · Zbl 1418.62549
[29] Yue, Y. R.; Rue, H., Bayesian inference for additive mixed quantile regression models, Comput. Stat. Data Anal., 55, 84-96 (2011) · Zbl 1247.62101
[30] Zhang, S.; Guo, B.; Dong, A.; He, J.; Xu, Z.; Chen, S. X., Cautionary tales on air-quality improvement in Beijing, Proc. R. Soc. A, Math. Phys. Eng. Sci., 473, Article 20170457 pp. (2017)
[31] Zhou, J.; Liu, J.; Wang, F.; Wang, H., Autoregressive model with spatial dependence and missing data, J. Bus. Econ. Stat., 1-20 (2020)
[32] Zhou, J.; Sun, W. W.; Zhang, J.; Li, L., Partially observed dynamic tensor response regression, J. Am. Stat. Assoc., 1-16 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.