×

Stochastic dynamics of an SIS epidemiological model with media coverage. (English) Zbl 1540.92238

Summary: In this paper, we establish a stochastic SIS epidemic model with general transmission function and media coverage, and prove that two thresholds \(\mathcal{R}_1^s\) and \(\mathcal{R}_2^s (\mathcal{R}_2^s < \mathcal{R}_1^s)\) can be used to govern the stochastic dynamics of the stochastic SIS model. If \(\mathcal{R}_1^s < 1\), the disease will die out with probability one and the distribution of the susceptible converges weakly to a boundary distribution; while if \(\mathcal{R}_2^s > 1\), the disease is persistent almost surely and there exists a unique stationary distribution. Furthermore, we study the disease dynamics when \(\mathcal{R}_2^s < 1 < \mathcal{R}_1^s\) numerically, and find that the disease dynamics in this range is rich and complex, i.e., the disease may persist or extinct. Epidemiologically, we find that the smaller the intensity of random disturbance, the smaller the oscillation amplitude of the solution, and as the intensities of random disturbance increase, the mean of the infectious decreases and the distribution of them becomes more and more right-skewed, which provide a theoretical basis for disease control.

MSC:

92D30 Epidemiology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34C60 Qualitative investigation and simulation of ordinary differential equation models
Full Text: DOI

References:

[1] Barczy, M.; Pap, G., Portmanteau theorem for unbounded measures, Statist. Probab. Lett., 76, 17, 1831-1835 (2006) · Zbl 1109.60004
[2] Brinn, M.; Carson, K.; Esterman, A.; Chang, A.; Smith, B., Mass media interventions for preventing smoking in young people, Cochrane Database Sys. Rev., 11, Article CD001006 pp. (2010)
[3] Britton, T.; Lindenstrand, D., Epidemic modelling: aspects where stochasticity matters, Math. Biosci., 222, 2, 109-116 (2009) · Zbl 1178.92046
[4] Cai, S.; Cai, Y.; Mao, X., A stochastic differential equation SIS epidemic model with two correlated brownian motions, Nonlinear Dyn., 97, 2, 2175-2187 (2019) · Zbl 1430.37109
[5] Cai, Y.; Kang, Y.; Banerjee, M.; Wang, W., A stochastic SIRS epidemic model with infectious force under intervention strategies, J. Differential Equations, 259, 12, 7463-7502 (2015) · Zbl 1330.35464
[6] Cai, Y.; Kang, Y.; Banerjee, M.; Wang, W. M., A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 14, 4, 893-910 (2016) · Zbl 1344.92155
[7] Cai, Y.; Lian, X.; Peng, Z.; Wang, W. M., Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment, Nonlinear Anal. RWA, 46, 178-194 (2019) · Zbl 1408.92028
[8] Capasso, V., Mathematical Structures of Epidemic Systems, Vol. 97 (1993), Springer Verlag · Zbl 0798.92024
[9] Caraballo, T.; El Fatini, M.; Pettersson, R.; Taki, R., A stochastic SIRI epidemic model with relapse and media coverage, Discrete Contin. Dyn. Syst. Ser. B, 23, 3483-3501 (2018) · Zbl 1404.92172
[10] Cui, J.; Tao, X.; Zhu, H., An SIS infection model incorporating media coverage, Rocky Mt. J. Math., 38, 5, 1323-1334 (2008) · Zbl 1170.92024
[11] den Driessche, P. V.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 1, 29-48 (2002) · Zbl 1015.92036
[12] Diekmann, O.; Heesterbeek, J. A.P.; Metz, J. A.J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28, 4, 365-382 (1990) · Zbl 0726.92018
[13] Dieu, N. T.; Nguyen, D. H.; Du, N. H.; Yin, G., Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15, 2, 1062-1084 (2016) · Zbl 1343.34109
[14] Du, N. H.; Nhu, N. N., Permanence and extinction for the stochastic SIR epidemic model, J. Differential Equations, 269, 11, 9619-9652 (2020) · Zbl 1452.34052
[15] Feng, T.; Qiu, Z.; Meng, X., Analysis of a stochastic recovery-relapse epidemic model with periodic parameters and media coverage, J. Appl. Anal. Comput., 9, 3, 1007-1021 (2019) · Zbl 1460.92195
[16] Guo, W.; Cai, Y.; Zhang, Q.; Wang, W. M., Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage, Physica A, 492, 2220-2236 (2018) · Zbl 1514.92123
[17] Haldar, S.; Chakraborty, K.; Das, K.; Kar, T. K., Bifurcation and control of an eco-epidemiological system with environmental fluctuations: a stochastic approach, Nonlinear Dyn., 80, 3, 1187-1207 (2015) · Zbl 1352.92153
[18] He, D.; Earn, D. J.D., The cohort effect in childhood disease dynamics, J. R. Soc. Interface, 13, 120, Article 20160156 pp. (2016)
[19] He, D.; Ionides, E. L.; King, A. A., Plug-and-play inference for disease dynamics: Measles in large and small populations as a case study, J. R. Soc. Interface, 7, 43, 271-283 (2009)
[20] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43, 3, 525-546 (2001) · Zbl 0979.65007
[21] Jarner, S. F.; Roberts, G. O., Polynomial convergence rates of Markov chains, Ann. Appl. Probab., 12, 1, 224-247 (2002) · Zbl 1012.60062
[22] Khasminskii, R., Stochastic Stability of Differential Equations, Vol. 66 (2011), Springer Science and Business Media
[23] Kiessler, P. C., Statistical Inference for Ergodic Diffusion Processes (2004), Springer-Verlag: Springer-Verlag London · Zbl 1038.62073
[24] Kliemann, W., Recurrence and invariant measures for degenerate diffusions, Ann. Probab., 15, 2, 690-707 (1987) · Zbl 0625.60091
[25] Li, S.; Guo, S., Permanence and extinction of a stochastic SIS epidemic model with three independent brownian motions, Discrete Contin. Dyn. Syst. Ser. B, 26, 5, 2693 (2021) · Zbl 1470.34131
[26] Liu, W.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Miol., 25, 4, 359-380 (1987) · Zbl 0621.92014
[27] Liu, W.; Levin, S. A.; Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of sirs epidemiological models, J. Math. Biol., 23, 2, 187-204 (1986) · Zbl 0582.92023
[28] Lu, Y.; Wang, J., Nonlinear dynamical complexity of agent-based stochastic financial interacting epidemic system, Nonlinear Dyn., 86, 3, 1823-1840 (2016)
[29] Mao, X., Stochastic Differential Equations and Applications (2007), Elsevier · Zbl 1138.60005
[30] Ruan, S.; Wang, W., Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188, 1, 135-163 (2003) · Zbl 1028.34046
[31] Rudnicki, R., Long-time behaviour of a stochastic prey-predator model, Stochastic Process. Appl., 108, 1, 93-107 (2003) · Zbl 1075.60539
[32] Tang, S.; Xiao, Y.; Yang, Y., Community-based measures for mitigating the 2009 H1N1 pandemic in China, PLoS One, 5, 6, Article e10911 pp. (2010)
[33] Tang, S.; Xiao, Y.; Yuan, L., Campus quarantine (Fengxiao) for curbing emergent infectious diseases: lessons from mitigating A/H1N1 in Xi’an, China, J. Theoret. Biol., 295, 47-58 (2012) · Zbl 1336.92088
[34] Tchuenche, J. M.; Bauch, C. T., Dynamics of an infectious disease where media coverage influences transmission, ISRN Biomath., 2012, Article 581274 pp. (2012) · Zbl 1269.92052
[35] Tchuenche, J. M.; Dube, N.; Bhunu, C. P.; Bauch, C. T., The impact of media coverage on the transmission dynamics of human influenza, BMC Public Health, 11, 1, 1-14 (2011)
[36] Tuong, T. D.; Nguyen, D. H.; Dieu, N. T.; Tran, K., Extinction and permanence in a stochastic sirs model in regime-switching with general incidence rate, Nonlinear Anal. Hybrid Syst., 34, 121-130 (2019) · Zbl 1434.92035
[37] Xiao, Y.; Tang, S.; Wu, J., Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5, 4, 7838 (2015)
[38] Xiao, Y.; Zhao, T.; Tang, S., Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10, 2, 445-461 (2013) · Zbl 1259.92061
[39] Yang, B.; Cai, Y.; Wang, K.; Wang, W. M., Global threshold dynamics of a stochastic epidemic model incorporating media coverage, Adv. Differ. Equ., 2018, 1, 462 (2018) · Zbl 1448.92360
[40] Yang, L.; Yang, X., The impact of nonlinear infection rate on the spread of computer virus, Nonlinear Dyn., 82, 1-2, 85-95 (2015) · Zbl 1348.68026
[41] Zhang, Y.; Fan, K.; Gao, S.; Liu, Y.; Chen, S., Ergodic stationary distribution of a stochastic sirs epidemic model incorporating media coverage and saturated incidence rate, Physica A, 514, 671-685 (2019) · Zbl 07562406
[42] Zhang, X.; Shi, Q.; Ma, S.; Huo, H.; Li, D., Dynamic behavior of a stochastic SIQS epidemic model with Lévy jumps, Nonlinear Dyn., 93, 3, 1481-1493 (2018) · Zbl 1398.37096
[43] Zhao, H.; Lin, Y.; Dai, Y., An SIRS epidemic model incorporating media coverage with time delay, Comput. Math. Methods Med., 2014, Article 680743 pp. (2014) · Zbl 1307.92359
[44] Zhao, S.; Stone, L.; Gao, D.; He, D., Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination, PLoS Neglect. Trop. Dis., 12, 1, Article e0006158 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.