×

Modelling dependency effect to extreme value distributions with application to extreme wind speed at Port Elizabeth, South Africa: a frequentist and Bayesian approaches. (English) Zbl 1505.62124

Summary: The dependency effect to extreme value distributions (EVDs) using the frequentist and Bayesian approaches have been used to analyse the extremes of annual and daily maximum wind speed at Port Elizabeth, South Africa. In the frequentist approach, the parameters of EVDs were estimated using maximum likelihood, whereas in the Bayesian approach the Markov Chain Monte Carlo technique with the Metropolis-Hastings algorithm was used. The results show that the EVDs fitted considering the dependency and seasonality effects with in the data series provide apparent benefits in terms of improved precision in estimation of the parameters as well as return levels of the distributions. The paper also discusses a method to construct informative priors empirically using historical data of the underlying process from other weather stations. The results from the Bayesian analysis show that posterior inference might be affected by the choice of priors used to formulate the informative priors. The Bayesian approach provides satisfactory estimation strategy in terms of precision compared to the frequentist approach, accounting for uncertainty in parameters and return levels estimation.

MSC:

62-08 Computational methods for problems pertaining to statistics
62G32 Statistics of extreme values; tail inference
62F15 Bayesian inference
62P12 Applications of statistics to environmental and related topics

Software:

evd; evdbayes; ismev
Full Text: DOI

References:

[1] Azzalini, A., Statistical inference: based on the likelihood (1996), London: Chapman and Hall, London · Zbl 0871.62001
[2] Barlow, AM; Rohrbeck, C.; Sharkey, P.; Shooter, R.; Simpson, ES, A Bayesian spatio-temporal model for precipitation extremes—STOR team contribution to the EVA2017 challenge, Extremes, 21, 431-439 (2018) · Zbl 1404.62133 · doi:10.1007/s10687-018-0330-z
[3] Behrens, C.; Lopes, H.; Gamerman, D., Bayesian analysis of extreme events with threshold estimation, Stat Model, 4, 227-244 (2004) · Zbl 1111.62023 · doi:10.1191/1471082X04st075oa
[4] Beirlant, J.; Goegebeur, Y.; Segeres, J.; Teugels, J., Statistics of extremes (2004), Chichester: Wiley, Chichester · Zbl 1070.62036
[5] Brabson, BB; Palutikof, JP, Tests of the generalised Pareto distribution for predicting extreme wind speeds, J Appl Meteorol, 39, 1627-1640 (2000) · doi:10.1175/1520-0450(2000)039<1627:TOTGPD>2.0.CO;2
[6] Caires S (2009) A comparative simulation study of the annual maxima and the peaks over-threshold methods. Deltares report 1200264-002 for Rijkswaterstaat, Waterdienst
[7] Coles, SG, An introduction to statistical modeling of extreme values (2001), London: Springer, London · Zbl 0980.62043
[8] Coles, SG; Powell, EA, Bayesian methods in extreme value modelling: a review and new developments, Int Stat Rev, 64, 119-136 (1996) · Zbl 0853.62025 · doi:10.2307/1403426
[9] Coles, SG; Tawn, JA, A Bayesian analysis of extreme rainfall data, Appl Stat, 45, 463-478 (1996) · doi:10.2307/2986068
[10] Coles, SG; Tawn, JA, Bayesian modelling of extreme surges on the UK east coast, Philos Trans R Soc A, 363, 1387-1406 (2005) · doi:10.1098/rsta.2005.1574
[11] Cunnane, C., A particular comparison of annual maxima and partial duration series methods of flood frequency prediction, J Hydrol, 18, 257-271 (1973) · doi:10.1016/0022-1694(73)90051-6
[12] Davison, AC; Smith, RL, Models for exceedances over high thresholds (with discussion), J R Stat Soc B, 52, 393-442 (1990) · Zbl 0706.62039
[13] De Oliveira, MMF; Ebecken, NFF; De Oliveira, JLF; Gilleland, E., Generalised extreme wind speed distributions in South America over the Atlantic Ocean region, Theor Appl Climatol, 104, 377-385 (2011) · doi:10.1007/s00704-010-0350-3
[14] De Paola, F.; Giugni, M.; Garcia-Aristizabal, A.; Bucchignani, E., GEV Parameter estimation and stationary vs. non-stationary analysis of extreme Rainfall in African test Cities, Hydrology, 5, 2, 28 (2018) · doi:10.3390/hydrology5020028
[15] Diriba TA, Debusho LK, Botai J (2015) Modeling extreme daily temperature using generalized pareto distribution at port Elizabeth, South Africa, peer-reviewed. In: Proceedings of the 57th annual conference of the South African statistical association, University of Pretoria, Pretoria, South Africa, pp 41-48
[16] Diriba, TA; Debusho, LK; Botai, J.; Hassen, A., Bayesian modelling of extreme wind speed at Cape Town, South Africa, Environ Ecol Stat, 24, 243-267 (2017) · doi:10.1007/s10651-017-0369-z
[17] Diriba TA (2018) Analysis of extreme climate events in South Africa. Ph.D. thesis, University of Pretoria
[18] Faranda, D.; Lucarini, V.; Turchetti, G.; Vaienti, S., Numerical convergence of the block maxima approach to the generalised extreme value distribution, J Stat Phys, 145, 5, 1156-1180 (2011) · Zbl 1375.60097 · doi:10.1007/s10955-011-0234-7
[19] Fawcett, L.; Walshaw, D., A hierarchical model for extreme wind speeds, Appl Stat, 55, 5, 631-646 (2006) · Zbl 1109.62115
[20] Ferreira, A.; De Haan, L., The generalised Pareto process; with a view towards application and simulation, Bernoulli, 20, 4, 1717-1737 (2014) · Zbl 1312.60068 · doi:10.3150/13-BEJ538
[21] Ferreiara, A.; De Haan, L., On the block maxima method in extreme value theory: PWM estimators, Ann Stat, 43, 1, 276-298 (2015) · Zbl 1310.62064 · doi:10.1214/14-AOS1280
[22] Ferro, C.; Segers, J., Inference for clusters of extreme values, J R Stat Soc B, 65, 545-556 (2003) · Zbl 1065.62091 · doi:10.1111/1467-9868.00401
[23] Gilleland, E.; Katz, RW, New software to analyze how extremes change over time, Eos Trans Am Geophys J, 92, 2, 13-14 (2011) · doi:10.1029/2011EO020001
[24] Hastings, WK, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109 (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[25] Hundecha, Y.; St-Hilaire, A.; Ouarda, T.; El Adlouni, S., A Non-stationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence, Canada, J Appl Meteorol Climatol, 47, 2745-2759 (2008) · doi:10.1175/2008JAMC1665.1
[26] IPCC (2018) Summary for Policymakers. In: Global warming of \(1.5^{\circ }\text{C} \). An IPCC special report on the impacts of global warming of \(1.5^{\circ }\text{ C }\) above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, p 32
[27] Jenkinson, AF, The frequency distribution of the annual maximum (or minimum) values of meteorological elements, Q J R Meteorol Soc, 87, 158-171 (1955) · doi:10.1002/qj.49708134804
[28] Jocković, J., Quantile estimation for the generalised Pareto distribution with application to finance, Yugoslav J Oper Res Soc, 22, 2334-6043 (2012)
[29] Kearns, P.; Pagan, A., Estimating the density tail index for financial time series, Rev Econ Stat, 79, 171-175 (1997) · doi:10.1162/003465397556755
[30] Kruger AC (2011) Wind climatology of South Africa relevant to the design of the built environment. Ph.D. thesis, University of Stellenbosch
[31] Kruger, AC; Retief, JV; Goliger, AM, Strong winds in South Africa: Part 2. Mapping of updated statistics, J S Afr Inst Civ Eng, 55, 2, 46-58 (2013)
[32] Lazoglou G, Anagnostopoulou C (2017) An overview of statistical methods for studying the extreme Rainfalls in mediterranean. In: Proceedings of 2nd international electronic conference on atmospheric sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece, p 681
[33] Leadbetter, MR; Lindgren, G.; Rootzén, H., Extremes and related properties of stationary sequences and processes (1983), New York: Springer, New York · Zbl 0518.60021
[34] Madsen, H.; Pearson, CP; Rosbjerg, D., Comparison of annual maximum series and partial duration series methods for modelling extreme hydrologic events 2. Regional modelling, Water Resour Res, 33, 759-769 (1997) · doi:10.1029/96WR03849
[35] Martins, ES; Stedinger, JR, Historical information in a generalised maximum likelihood framework with partial duration and annual maximum series, Water Resour Res, 37, 2559-2567 (2001) · doi:10.1029/2000WR000009
[36] Mélice, JL; Reason, CJ, Return period of extreme rainfall at George, South Africa, S Afr J Sci, 103, 11-12, 499-501 (2007)
[37] Metropolis, N.; Rosenbluth, MN; Teller, AH; Teller, E., Equations of state calculations by fast computing machine, J Chem Phys, 21, 6, 1087-1091 (1953) · Zbl 1431.65006 · doi:10.1063/1.1699114
[38] Pickands, J., Statistical inference using extreme order statistics, Ann Stat, 3, 119-131 (1975) · Zbl 0312.62038 · doi:10.1214/aos/1176343003
[39] Sang, H.; Gelfand, A., Hierarchical modelling for extreme values observed over space and time, Environ Ecol Stat, 16, 407-426 (2009) · doi:10.1007/s10651-007-0078-0
[40] Smith, RL, Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone, Stat Sci, 4, 4, 367-393 (1989) · Zbl 0955.62646 · doi:10.1214/ss/1177012400
[41] Stephenson AC (2003) Multivariate extreme value distributions and their application. Ph.D. thesis, Lancaster University · Zbl 1055.65021
[42] Stephenson AG (2016) ismev: an introduction to statistical modeling of extreme values. R package version 1.41. http://www.ral.ucar.edu/ ericg/softextreme.php
[43] Stephenson AG (2018) evd: functions for extreme value distributions. R package version 2.3-3. https://cran.r-project.org
[44] Stephenson AG, Ribatet MA (2006) A user’s guide to the evdbayes. R package version 1.1. http://www.cran.r-project.org/
[45] Von Mises R (1954) La distribution de la plus grande de n valeurs. In: Selected papers II. American Mathematical Society, pp 271-294
[46] Wang, QJ, The POT model described by the generalised Pareto distribution with Poison arrival rate, J Hydrol, 129, 263-280 (1991) · doi:10.1016/0022-1694(91)90054-L
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.