×

String bordism and chromatic characteristics. (English) Zbl 1427.55004

Davis, Daniel G. (ed.) et al., Homotopy theory: tools and applications. A conference in honor of Paul Goerss’s 60th birthday, University of Illinois at Urbana-Champaign, Urbana, IL, USA, July 17–21, 2017. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 729, 239-254 (2019).
The author gives a natural extension of his notion of characteristics for ring spectra [M. Szymik, Algebr. Geom. Topol. 14, No. 6, 3717–3743 (2014; Zbl 1311.55014)] to chromatic homotopy theory, using the Hopkins-Miller classes \(\zeta_n\in \pi_{-1} (\hat{\mathbb{S}}) \) in the homotopy of the \(K(n)\)-local sphere, where \(K(n)\) is the \(n\)th Morava \(K\)-theory (at an implicit prime \(p\)). A \(K(n)\)-local ring spectrum \(A\) is said to have chromatic characteristic \(\zeta_n\) if \((\eta_A)_* \zeta_n = 0 \) in \(\pi_{-1} (A)\), where \(\eta_A\) is the unit of \(A\).
The author’s principal interest is in the \(E_\infty\) ring spectra case, motivated by examples related to bordism. To this end, he constructs \(\hat{\mathbb{S}} /\!\!/ \zeta_n\), the versal \(K(n)\)-local \(E_\infty\) ring spectrum of characteristic \(\zeta_n\).
The notion of chromatic characteristics is illustrated by further examples. The \(K(1)\)-localizations of the connective \(K\)-theory spectra \(ko\) and \(ku\) are shown to have characteristic \(\zeta_1\), whereas, in coprime characteristic, the \(K(1)\)-localization of the algebraic \(K\)-theory spectrum \(K(\mathbb{F}_q)\) does not.
Likewise, the \(K(2)\)-localization of the topological modular forms spectrum \(tmf\) is shown to have characteristic \(\zeta_2\) and, for all \(n\geq 1\), the \(K(n)\)-localization of the spin cobordism spectrum \(\mathrm{MSpin}\) to have characteristic \(\zeta_n\).
For the entire collection see [Zbl 1419.55001].

MSC:

55N22 Bordism and cobordism theories and formal group laws in algebraic topology
55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.)
19L41 Connective \(K\)-theory, cobordism
57R90 Other types of cobordism
58J26 Elliptic genera

Citations:

Zbl 1311.55014

References:

[1] M. Ando, M.J. Hopkins, C. Rezk. Multiplicative orientatons of \(\KO \)-theory and the spectrum of topological modular forms. Preprint. \url{www.math.uiuc.edu/ mando/papers/koandtmf.pdf}
[2] Ando, M.; Hopkins, M. J.; Strickland, N. P., Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math., 146, 3, 595-687 (2001) · Zbl 1031.55005 · doi:10.1007/s002220100175
[3] Ando, Matthew; Hopkins, Michael J.; Strickland, Neil P., The sigma orientation is an \(H_\infty\) map, Amer. J. Math., 126, 2, 247-334 (2004) · Zbl 1071.55003
[4] Artin, M., Algebraization of formal moduli. I. Global Analysis (Papers in Honor of K. Kodaira), 21-71 (1969), Univ. Tokyo Press, Tokyo · Zbl 0205.50402
[5] Ausoni, Christian, On the algebraic \(K\)-theory of the complex \(K\)-theory spectrum, Invent. Math., 180, 3, 611-668 (2010) · Zbl 1204.19002 · doi:10.1007/s00222-010-0239-x
[6] Ausoni, Christian; Rognes, John, Algebraic \(K\)-theory of topological \(K\)-theory, Acta Math., 188, 1, 1-39 (2002) · Zbl 1019.18008 · doi:10.1007/BF02392794
[7] Baker, Andrew, Characteristics for \(\mathcal{E}_\infty\) ring spectra. An alpine bouquet of algebraic topology, Contemp. Math. 708, 1-17 (2018), Amer. Math. Soc., Providence, RI · Zbl 1475.55013 · doi:10.1090/conm/708/14265
[8] A. Beaudry, P.G. Goerss, H.-W. Henn. Chromatic splitting for the \(K(2)\)-local sphere at \(p=2\). Preprint. \url{arxiv.org/abs/1712.08182} · Zbl 1494.55016
[9] Behrens, Mark, A modular description of the \(K(2)\)-local sphere at the prime 3, Topology, 45, 2, 343-402 (2006) · Zbl 1099.55002 · doi:10.1016/j.top.2005.08.005
[10] M. Behrens. The construction of \(\tmf \). Topological modular forms (Talbot Workshop 2007) 131-188. Mathematical Surveys and Monographs 201. American Mathematical Society, 2014. · Zbl 1328.55014
[11] Behrens, Mark; Davis, Daniel G., The homotopy fixed point spectra of profinite Galois extensions, Trans. Amer. Math. Soc., 362, 9, 4983-5042 (2010) · Zbl 1204.55007 · doi:10.1090/S0002-9947-10-05154-8
[12] B\`“{o}kstedt, M.; Madsen, I., Topological cyclic homology of the integers, Ast\'”{e}risque, 226, 7-8, 57-143 (1994) · Zbl 0816.19001
[13] Botvinnik, B. I., Structure of the ring \(M{\rm SU}_*\), Mat. Sb.. Math. USSR-Sb., 181 69, 2, 581-596 (1991) · Zbl 0726.55003 · doi:10.1070/SM1991v069n02ABEH001377
[14] Bousfield, A. K., The localization of spectra with respect to homology, Topology, 18, 4, 257-281 (1979) · Zbl 0417.55007 · doi:10.1016/0040-9383(79)90018-1
[15] Bruner, R. R.; May, J. P.; McClure, J. E.; Steinberger, M., \(H_\infty\) ring spectra and their applications, Lecture Notes in Mathematics 1176, viii+388 pp. (1986), Springer-Verlag, Berlin · Zbl 0585.55016 · doi:10.1007/BFb0075405
[16] Devinatz, Ethan S.; Hopkins, Michael J., Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology, 43, 1, 1-47 (2004) · Zbl 1047.55004 · doi:10.1016/S0040-9383(03)00029-6
[17] Goerss, Paul G., Topological modular forms [after Hopkins, Miller and Lurie], Ast\'{e}risque, 332, Exp. No. 1005, viii, 221-255 (2010) · Zbl 1222.55003
[18] Goerss, Paul G.; Henn, Hans-Werner; Mahowald, Mark, The rational homotopy of the \(K(2)\)-local sphere and the chromatic splitting conjecture for the prime 3 and level 2, Doc. Math., 19, 1271-1290 (2014) · Zbl 1315.55009
[19] Goerss, Paul; Henn, Hans-Werner; Mahowald, Mark; Rezk, Charles, On Hopkins’ Picard groups for the prime 3 and chromatic level 2, J. Topol., 8, 1, 267-294 (2015) · Zbl 1314.55006 · doi:10.1112/jtopol/jtu024
[20] Hopkins, Michael J., Topological modular forms, the Witten genus, and the theorem of the cube. Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Z\`“{u}rich, 1994, 554-565 (1995), Birkh\'”{a}user, Basel · Zbl 0848.55002
[21] Hopkins, M. J., Algebraic topology and modular forms. Proceedings of the International Congress of Mathematicians, Vol. I, Beijing, 2002, 291-317 (2002), Higher Ed. Press, Beijing · Zbl 1031.55007
[22] Hopkins, Michael J., \(K(1)\)-local \(E_\infty \)-ring spectra. Topological modular forms, Math. Surveys Monogr. 201, 287-302 (2014), Amer. Math. Soc., Providence, RI · Zbl 1328.55018 · doi:10.1090/surv/201/16
[23] Hopkins, Michael J.; Mahowald, Mark, From elliptic curves to homotopy theory. Topological modular forms, Math. Surveys Monogr. 201, 261-285 (2014), Amer. Math. Soc., Providence, RI · Zbl 1328.55013 · doi:10.1090/surv/201/15
[24] Hopkins, Michael J.; Miller, Haynes R., Elliptic curves and stable homotopy I. Topological modular forms, Math. Surveys Monogr. 201, 209-260 (2014), Amer. Math. Soc., Providence, RI · Zbl 1328.55008 · doi:10.1090/surv/201/14
[25] Hovey, Mark, Bousfield localization functors and Hopkins’ chromatic splitting conjecture. The \v{C}ech centennial, Boston, MA, 1993, Contemp. Math. 181, 225-250 (1995), Amer. Math. Soc., Providence, RI · Zbl 0830.55004 · doi:10.1090/conm/181/02036
[26] Hovey, Mark A., \(v_n\)-elements in ring spectra and applications to bordism theory, Duke Math. J., 88, 2, 327-356 (1997) · Zbl 0880.55006 · doi:10.1215/S0012-7094-97-08813-X
[27] Hovey, Mark, The homotopy of \(M\,\rm String\) and \(M\,\rm U\langle6\rangle\) at large primes, Algebr. Geom. Topol., 8, 4, 2401-2414 (2008) · Zbl 1165.55001 · doi:10.2140/agt.2008.8.2401
[28] Hovey, Mark, Operations and co-operations in Morava \(E\)-theory, Homology Homotopy Appl., 6, 1, 201-236 (2004) · Zbl 1063.55003
[29] Hovey, Mark A.; Ravenel, Douglas C., The \(7\)-connected cobordism ring at \(p=3\), Trans. Amer. Math. Soc., 347, 9, 3473-3502 (1995) · Zbl 0852.55008 · doi:10.2307/2155020
[30] Hovey, Mark; Strickland, Neil P., Morava \(K\)-theories and localisation, Mem. Amer. Math. Soc., 139, 666, viii+100 pp. (1999) · Zbl 0929.55010 · doi:10.1090/memo/0666
[31] Joachim, Michael, A symmetric ring spectrum representing \(K{\rm O} \)-theory, Topology, 40, 2, 299-308 (2001) · Zbl 0979.55002 · doi:10.1016/S0040-9383(99)00063-4
[32] Joachim, Michael, Higher coherences for equivariant \(K\)-theory. Structured ring spectra, London Math. Soc. Lecture Note Ser. 315, 87-114 (2004), Cambridge Univ. Press, Cambridge · Zbl 1070.19007 · doi:10.1017/CBO9780511529955.006
[33] Kochman, Stanley O., The ring structure of \({\rm BoP}_*\). Algebraic topology, Oaxtepec, 1991, Contemp. Math. 146, 171-197 (1993), Amer. Math. Soc., Providence, RI · Zbl 0788.55004 · doi:10.1090/conm/146/01222
[34] Laures, Gerd, The topological \(q\)-expansion principle, Topology, 38, 2, 387-425 (1999) · Zbl 0924.55004 · doi:10.1016/S0040-9383(98)00019-6
[35] Laures, Gerd, An \(E_\infty\) splitting of spin bordism, Amer. J. Math., 125, 5, 977-1027 (2003) · Zbl 1058.55001
[36] Laures, Gerd, \(K(1)\)-local topological modular forms, Invent. Math., 157, 2, 371-403 (2004) · Zbl 1078.55010 · doi:10.1007/s00222-003-0355-y
[37] Lewis, L. G., Jr.; May, J. P.; Steinberger, M.; McClure, J. E., Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, x+538 pp. (1986), Springer-Verlag, Berlin · Zbl 0611.55001 · doi:10.1007/BFb0075778
[38] Mandell, M. A.; May, J. P.; Schwede, S.; Shipley, B., Model categories of diagram spectra, Proc. London Math. Soc. (3), 82, 2, 441-512 (2001) · Zbl 1017.55004 · doi:10.1112/S0024611501012692
[39] May, J. Peter, \(E_{\infty}\) ring spaces and \(E_{\infty}\) ring spectra, Lecture Notes in Mathematics, Vol. 577, 268 pp. (1977), Springer-Verlag, Berlin-New York · Zbl 0345.55007
[40] Mitchell, S. A., The Morava \(K\)-theory of algebraic \(K\)-theory spectra, \(K\)-Theory, 3, 6, 607-626 (1990) · Zbl 0709.55011 · doi:10.1007/BF01054453
[41] Mitchell, Stephen A., \(K(1)\)-local homotopy theory, Iwasawa theory and algebraic \(K\)-theory. Handbook of \(K\)-theory. Vol. 1, 2, 955-1010 (2005), Springer, Berlin · Zbl 1111.19002 · doi:10.1007/978-3-540-27855-9\_19
[42] Pengelley, David J., The homotopy type of \(M{\rm SU} \), Amer. J. Math., 104, 5, 1101-1123 (1982) · Zbl 0508.55007 · doi:10.2307/2374085
[43] Quillen, Daniel, On the cohomology and \(K\)-theory of the general linear groups over a finite field, Ann. of Math. (2), 96, 552-586 (1972) · Zbl 0249.18022 · doi:10.2307/1970825
[44] H. Reeker. On \(\rmK(1)\)-local \(\SU \)-bordism. Dissertation, Bochum, 2009. · Zbl 1296.57006
[45] Rognes, John, Algebraic \(K\)-theory of the two-adic integers, J. Pure Appl. Algebra, 134, 3, 287-326 (1999) · Zbl 0929.19004 · doi:10.1016/S0022-4049(97)00156-4
[46] Szymik, Markus, \(K3\) spectra, Bull. Lond. Math. Soc., 42, 1, 137-148 (2010) · Zbl 1198.55006 · doi:10.1112/blms/bdp106
[47] Szymik, Markus, Crystals and derived local moduli for ordinary K3 surfaces, Adv. Math., 228, 1, 1-21 (2011) · Zbl 1230.14024 · doi:10.1016/j.aim.2011.05.004
[48] Szymik, Markus, Commutative \(\mathbb{S} \)-algebras of prime characteristics and applications to unoriented bordism, Algebr. Geom. Topol., 14, 6, 3717-3743 (2014) · Zbl 1311.55014 · doi:10.2140/agt.2014.14.3717
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.