×

Steiner shallow-light trees are exponentially lighter than spanning ones. (English) Zbl 1319.05038

Summary: For a pair of parameters \(\alpha,\beta \geq 1\), a spanning tree \(T\) of a weighted undirected \(n\)-vertex graph \(G = (V,E,w)\) is called an \((\alpha,\beta)\)-shallow-light tree (shortly, \((\alpha,\beta)\)-SLT) of \(G\) with respect to a designated vertex \(rt \in V\) if (1) it approximates all distances from \(rt\) to the other vertices up to a factor of \(\alpha\), and (2) its weight is at most \(\beta\) times the weight of the minimum spanning tree \(\mathrm{MST}(G)\) of \(G\). The parameter \(\alpha\) (resp., \(\beta\)) is called the root-distortion (resp., lightness) of the tree \(T\). Shallow-light trees (SLTs) constitute a fundamental graph structure, with numerous theoretical and practical applications. In particular, they were used for constructing spanners in network design, for VLSI-circuit design, for various data gathering and dissemination tasks in wireless and sensor networks, in overlay networks, and in the message-passing model of distributed computing.
Tight tradeoffs between the parameters of SLTs were established by B. Awerbuch et al. [“Cost-sensitive analysis of communication protocols”, in: PODC ’90 Proceedings of the ninth annual ACM symposium on Principles of distributed computing. New York: ACM, 177–187 [1990), “Efficient broadcast and light-weight spanners”, manuscript (1991)] and S. Khuller et al. [Algorithmica 14, No. 4, 305–321 (1995; Zbl 0833.68096)]. They showed that for any \(\epsilon > 0\) there always exist \((1+\epsilon,O(\frac{1}{\epsilon}))\)-SLTs and that the upper bound \(\beta = O(\frac{1}{\epsilon})\) on the lightness of SLTs cannot be improved. In this paper we show that using Steiner points one can build SLTs with logarithmic lightness, i.e., \(\beta = O(\log \frac{1}{\epsilon})\). This establishes an exponential separation between spanning SLTs and Steiner ones. In the regime \(\epsilon = 0\) our construction provides a shortest-path tree with weight at most \(O(\log n) \cdot w(\mathrm{MST}(G))\). Moreover, we prove matching lower bounds that show that all our results are tight up to constant factors.

MSC:

05C05 Trees
05C85 Graph algorithms (graph-theoretic aspects)
68R10 Graph theory (including graph drawing) in computer science
68M10 Network design and communication in computer systems

Citations:

Zbl 0833.68096
Full Text: DOI

References:

[1] I. Abraham, Y. Bartal, and O. Neiman, {\it Nearly tight low stretch spanning trees}, in Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2008, pp. 781-790.
[2] I. Abraham and O. Neiman, {\it Using petal-decompositions to build a low stretch spanning tree}, in Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), 2012, pp. 395-406. · Zbl 1286.05028
[3] N. Alon, R. M. Karp, D. Peleg, and D. West, {\it A graph-theoretic game and its application to the k-server problem}, SIAM J. Comput., 24 (1995), pp. 78-100. · Zbl 0818.90147
[4] I. Alth \(\ddot{\mbox{o}}\) fer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares, {\it On sparse spanners of weighted graphs}, Discrete Comput. Geom., 9 (1993), pp. 81-100. · Zbl 0762.05039
[5] B. Aronov, M. de Berg, O. Cheong, J. Gudmundsson, H. J. Haverkort, M. H. M. Smid, and A. Vigneron, {\it Sparse geometric graphs with small dilation}, Comput. Geom., 40 (2008), pp. 207-219. · Zbl 1139.05063
[6] B. Awerbuch, A. Baratz, and D. Peleg, {\it Cost-sensitive analysis of communication protocols}, in Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing (PODC), 1990, pp. 177-187.
[7] B. Awerbuch, A. Baratz, and D. Peleg, {\it Proceedings of the {\it 9}th Annual ACM Symposium on Principle of Distributed Computing (PODC)}, 1990, pp. 177-187, {\it Efficient Broadcast and Light-Weight Spanners}, manuscript, 1991.
[8] Y. Bartal, {\it Probabilistic approximations of metric spaces and its algorithmic applications}, in Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1996, pp. 184-193.
[9] Y. Bartal, {\it On approximating arbitrary metrices by tree metrics}, in Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), 1998, pp. 161-168. · Zbl 1029.68951
[10] Y. Ben-Shimol, A. Dvir, and M. Segal, {\it SPLAST: A novel approach for multicasting in mobile wireless ad hoc networks}, in Proceedings of the 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2004, pp. 1011-1015.
[11] P. Berman and V. Ramaiyer, {\it Improved approximations for the Steiner tree problem}, J. Algorithms, 17 (1994), pp. 381-408. · Zbl 0820.68049
[12] M. W. Bern and P. E. Plassmann, {\it The Steiner problem with edge lengths 1 and 2}, Inform Process. Lett., 32 (1989), pp. 171-176. · Zbl 0677.68074
[13] K. Bharath-Kumar and J. M. Jaffe, {\it Routing to multiple destinations in computer networks}, IEEE Trans. Commun., 31 (1983), pp. 343-351. · Zbl 0505.68031
[14] B. Bollobás, D. Coppersmith, and M. Elkin, {\it Sparse distance preservers and additive spanners}, SIAM J. Discrete Math., 19 (2006), pp. 1029-1055. · Zbl 1103.05027
[15] R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vahdat, {\it Opus: An overlay peer utility service}, in Proceedings of the 5th IEEE Conference on Open Architectures and Network Programming (OPENARCH), 2002.
[16] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li, {\it Approximation algorithms for directed Steiner problems}, J. Algorithms, 33 (1999), pp. 73-91. · Zbl 0937.68155
[17] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, {\it Performance-driven global routing for cell based ICS}, in Proceedings of the 9th IEEE International Conference on Computer Design (ICCD), 1991, pp. 170-173.
[18] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, {\it Provably good algorithms for performance-driven global routing}, in Proceedings of the 5th IEEE International Symposium on Circuits and Systems (ISCAS), 1992, pp. 2240-2243.
[19] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, {\it Provably good performance-driven global routing}, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11 (1992), pp. 739-752.
[20] D. Coppersmith and S. Winograd, {\it Matrix multiplication via arithmetic progressions}, J. Symbolic Comput., 9 (1990), pp. 251-280. · Zbl 0702.65046
[21] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein, {\it Introduction to Algorithms}, 2nd ed., McGraw-Hill, Boston, MA, 2001. · Zbl 1047.68161
[22] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer, {\it Network correlated data gathering with explicit communication: NP-completeness and algorithms}, IEEE/ACM Trans. Netw., 14 (2006), pp. 41-54.
[23] Y. Dinitz, M. Elkin, and S. Solomon, {\it Low-light trees, and tight lower bounds for Euclidean spanners}, Discrete Comput. Geom., 43 (2010), pp. 736-783. · Zbl 1219.05184
[24] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng, {\it Lower-stretch spanning trees}, SIAM J. Comput., 38 (2008), pp. 608-628. · Zbl 1172.68045
[25] M. Elkin and S. Solomon, {\it Narrow-shallow-low-light trees with and without Steiner points}, SIAM J. Discrete Math., 25 (2011), pp. 181-210. · Zbl 1227.68082
[26] J. Fakcharoenphol, S. Rao, and K. Talwar, {\it A tight bound on approximating arbitrary metrics by tree metrics}, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), 2003, pp. 448-455. · Zbl 1192.68977
[27] E. N. Gilbert and H. O. Pollak, {\it Steiner minimal trees}, SIAM J. Appl. Math., 16 (1968), pp. 1-29. · Zbl 0159.22001
[28] A. Goel and K. Munagala, {\it Balancing Steiner trees and shortest path trees online}, in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2000, pp. 562-563. · Zbl 0951.05025
[29] A. Gupta, {\it Steiner points in tree metrics don’t (really) help}, in Proceedings of the Twelfth Annul ACM-SIAM Symposium on Discrete Algorithms (SODA), 2001, pp. 220-227. · Zbl 0990.05033
[30] M. T. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour, {\it Approximating buy-at-bulk and shallow-light k-Steiner trees}, Algorithmica, 53 (2009), pp. 89-103. · Zbl 1176.68242
[31] F. K. Hwang and D. Z. Du, {\it Steiner minimal trees on Chinese checkerboards}, Math. Mag., 64 (1991), pp. 332-339. · Zbl 0766.05020
[32] P. Indyk, {\it Sublinear time algorithms for metric space problems}, in Proceedings of the 31th Annual ACM Symposium on Theory of Computing (STOC), 1999, pp. 428-434. · Zbl 1346.68256
[33] J. M. Jaffe, {\it Distributed multi-destination routing: The constraints of local information}, SIAM J. Comput., 14 (1985), pp. 875-888. · Zbl 0575.68070
[34] S. Khuller, B. Raghavachari, and N. E. Young, {\it Balancing minimum spanning and shortest path trees}, in Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1993, pp. 243-250. · Zbl 0801.68134
[35] V. P. Kompella, J. Pasquale, and G. C. Polyzos, {\it Multicast routing for multimedia communication}, IEEE/ACM Trans. Netw., 1 (1993), pp. 286-292.
[36] G. Konjevod, R. Ravi, and F. S. Salman, {\it On approximating planar metrics by tree metrics}, Inform Process. Lett., 80 (2001), pp. 213-219. · Zbl 1051.68141
[37] G. Kortsarz and D. Peleg, {\it Approximating the weight of shallow Steiner trees}, Discrete Appl. Math., 93 (1999), pp. 265-285. · Zbl 0931.68077
[38] D. Kostic and A. Vahdat, {\it Latency Versus Cost Optimizations in Hierarchical Overlay Networks}, Technical report, Duke University, Durham, NC, 2002.
[39] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III, {\it Bicriteria network design problems}, J. Algorithms, 28 (1998), pp. 142-171. · Zbl 0906.68076
[40] D. Peleg, {\it Distributed Computing: A Locality-Sensitive Approach}, SIAM, Philadelphia, 2000. · Zbl 0959.68042
[41] D. Peleg and A. Schäffer, {\it Graph spanners}, J. Graph Theory, 13 (1989), pp. 99-116. · Zbl 0673.05059
[42] M. Pǎtraşcu and E. D. Demaine, {\it Logarithmic lower bounds in the cell-probe model}, SIAM J. Comput., 35 (2006), pp. 932-963. · Zbl 1122.68044
[43] S. Rao and W. D. Smith, {\it Approximating geometrical graphs via “spanners” and “banyans,”} in Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), 1998, pp. 540-550. · Zbl 1027.68651
[44] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian, {\it Approximating the single-sink link-installation problem in network design}, SIAM J. Optim., 11 (2000), pp. 595-610. · Zbl 1010.90002
[45] H. Shpungin and M. Segal, {\it Near optimal multicriteria spanner constructions in wireless ad-hoc networks}, IEEE/ACM Trans. Netw., 18 (2010), pp. 1963-1976.
[46] T. Takaoka, {\it A new upper bound on the complexity of the all pairs shortest path problem}, Inform Process. Lett., 43 (1992), pp. 195-199. · Zbl 0763.68044
[47] J. Vogel, J. Widmer, D. Farin, M. Mauve, and W. Effelsberg, {\it Priority-based distribution trees for application-level multicast}, in Proceedings of the 2nd ACM Workshop on Network and System Support for Games (NETGAMES), 2003, pp. 148-157.
[48] P. von Rickenbach and R. Wattenhofer, {\it Gathering correlated data in sensor networks}, in Proceedings of the ACM Joint Workshop on Foundations of Mobile Computing (DIALM-POMC), 2004, pp. 60-66.
[49] V. Vassilevska Williams, {\it Multiplying matrices faster than Coppersmith-Winograd}, in Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), 2012, pp. 887-898. · Zbl 1286.65056
[50] B. Y. Wu, K.-M. Chao, and C. Y. Tang, {\it Light graphs with small routing cost}, Networks, 39 (2002), pp. 130-138. · Zbl 1028.90075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.