The Schur multiplier of groups of order \(p^5\). (English) Zbl 1468.20036
Summary: In this article, we compute the Schur multiplier, non-abelian tensor square and exterior square of non-abelian \(p\)-groups of order \(p^5\). As an application, we determine the capability of groups of order \(p^5\).
Software:
GAPReferences:
[1] | Y. G. Berkovich, On the order of the commutator subgroup and the Schur multiplier of a finite p-group, J. Algebra 144 (1991), no. 2, 269-272.; Berkovich, Y. G., On the order of the commutator subgroup and the Schur multiplier of a finite p-group, J. Algebra, 144, 2, 269-272 (1991) · Zbl 0739.20005 |
[2] | F. R. Beyl, The Schur multiplicator of metacyclic groups, Proc. Amer. Math. Soc. 40 (1973), 413-418.; Beyl, F. R., The Schur multiplicator of metacyclic groups, Proc. Amer. Math. Soc., 40, 413-418 (1973) · Zbl 0267.18021 |
[3] | F. R. Beyl, U. Felgner and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), no. 1, 161-177.; Beyl, F. R.; Felgner, U.; Schmid, P., On groups occurring as center factor groups, J. Algebra, 61, 1, 161-177 (1979) · Zbl 0428.20028 |
[4] | F. R. Beyl and M. R. Jones, Addendum: “The Schur multiplicator of metacyclic groups“ (Proc. Amer. Math. Soc. 40 (1973), 413-418 by F. R. Beyl), Proc. Amer. Math. Soc. 43 (1974), 251-252. <pub-id pub-id-type=”doi“>10.1090/S0002-9939-1974-0344329-9; <element-citation publication-type=”journal“> Beyl, F. R.Jones, M. R.Addendum: “The Schur multiplicator of metacyclic groups” (Proc. Amer. Math. Soc. 40 (1973), 413-418 by F. R. Beyl)Proc. Amer. Math. Soc.431974251252 · Zbl 0267.18022 |
[5] | N. Blackburn and L. Evens, Schur multipliers of p-groups, J. Reine Angew. Math. 309 (1979), 100-113.; Blackburn, N.; Evens, L., Schur multipliers of p-groups, J. Reine Angew. Math., 309, 100-113 (1979) · Zbl 0406.20014 |
[6] | R. D. Blyth, F. Fumagalli and M. Morigi, Some structural results on the non-abelian tensor square of groups, J. Group Theory 13 (2010), no. 1, 83-94.; Blyth, R. D.; Fumagalli, F.; Morigi, M., Some structural results on the non-abelian tensor square of groups, J. Group Theory, 13, 1, 83-94 (2010) · Zbl 1206.20033 |
[7] | R. D. Blyth, F. Fumagalli and M. Morigi, A survey of recent progress on non-abelian tensor squares of groups, Ischia Group Theory 2010, World Scientific, Hackensack (2012), 26-38.; Blyth, R. D.; Fumagalli, F.; Morigi, M., A survey of recent progress on non-abelian tensor squares of groups, Ischia Group Theory 2010, 26-38 (2012) · Zbl 1294.20040 |
[8] | R. D. Blyth and R. F. Morse, Computing the nonabelian tensor squares of polycyclic groups, J. Algebra 321 (2009), no. 8, 2139-2148.; Blyth, R. D.; Morse, R. F., Computing the nonabelian tensor squares of polycyclic groups, J. Algebra, 321, 8, 2139-2148 (2009) · Zbl 1195.20035 |
[9] | L. R. Bosko, On Schur multipliers of Lie algebras and groups of maximal class, Internat. J. Algebra Comput. 20 (2010), no. 6, 807-821.; Bosko, L. R., On Schur multipliers of Lie algebras and groups of maximal class, Internat. J. Algebra Comput., 20, 6, 807-821 (2010) · Zbl 1223.17015 |
[10] | R. Brown, D. L. Johnson and E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177-202.; Brown, R.; Johnson, D. L.; Robertson, E. F., Some computations of nonabelian tensor products of groups, J. Algebra, 111, 1, 177-202 (1987) · Zbl 0626.20038 |
[11] | R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311-335.; Brown, R.; Loday, J.-L., Van Kampen theorems for diagrams of spaces, Topology, 26, 3, 311-335 (1987) · Zbl 0622.55009 |
[12] | B. Eick, Schur multiplicators of finite p-groups with fixed coclass, Israel J. Math. 166 (2008), 157-166.; Eick, B., Schur multiplicators of finite p-groups with fixed coclass, Israel J. Math., 166, 157-166 (2008) · Zbl 1153.20015 |
[13] | B. Eick, Computing p-groups with trivial Schur multiplicator, J. Algebra 322 (2009), no. 3, 741-751.; Eick, B., Computing p-groups with trivial Schur multiplicator, J. Algebra, 322, 3, 741-751 (2009) · Zbl 1196.20019 |
[14] | G. Ellis, On the Schur multiplier of p-groups, Comm. Algebra 27 (1999), no. 9, 4173-4177.; Ellis, G., On the Schur multiplier of p-groups, Comm. Algebra, 27, 9, 4173-4177 (1999) · Zbl 0947.20008 |
[15] | G. Ellis, HAP-Homological algebra programming. Version 1.12, (2017), .; Ellis, G., Website |
[16] | B. Feng, A. Hanany, Y.-H. He and N. Prezas, Discrete torsion, non-abelian orbifolds and the Schur multiplier, Horizons in World Physics, Horiz. World Phys. 245, Nova Science, New York (2004), 27-44.; Feng, B.; Hanany, A.; He, Y.-H.; Prezas, N., Discrete torsion, non-abelian orbifolds and the Schur multiplier, Horizons in World Physics, 27-44 (2004) |
[17] | T. Ganea, Homologie et extensions centrales de groupes, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A556-A568.; Ganea, T., Homologie et extensions centrales de groupes, C. R. Acad. Sci. Paris Sér. A-B, 266, A556-A568 (1968) · Zbl 0175.29702 |
[18] | T. J. Ghorbanzadeh, M. Parvizi and P. Niroomand, The non-abelian tensor square of p-groups of order p^4, Asian-Eur. J. Math. 11 (2018), no. 6, Article ID 1850084.; Ghorbanzadeh, T. J.; Parvizi, M.; Niroomand, P., The non-abelian tensor square of p-groups of order p^4, Asian-Eur. J. Math., 11, 6 (2018) · Zbl 1402.20062 |
[19] | J. González-Sánchez and A. P. Nicolas, A bound for the exponent of the Schur multiplier of a finite p-group, J. Algebra 324 (2010), no. 9, 2564-2567.; González-Sánchez, J.; Nicolas, A. P., A bound for the exponent of the Schur multiplier of a finite p-group, J. Algebra, 324, 9, 2564-2567 (2010) · Zbl 1206.20018 |
[20] | S. Hatui, Characterization of finite p-groups by their Schur multiplier, Proc. Indian Acad. Sci. Math. Sci. 128 (2018), no. 4, Article ID 49.; Hatui, S., Characterization of finite p-groups by their Schur multiplier, Proc. Indian Acad. Sci. Math. Sci., 128, 4 (2018) · Zbl 1396.20015 |
[21] | A. Hoshi, M.-C. Kang and B. E. Kunyavskii, Noether’s problem and unramified Brauer groups, Asian J. Math. 17 (2013), no. 4, 689-713.; Hoshi, A.; Kang, M.-C.; Kunyavskii, B. E., Noether’s problem and unramified Brauer groups, Asian J. Math., 17, 4, 689-713 (2013) · Zbl 1291.13012 |
[22] | S. H. Jafari, A bound on the order of non-abelian tensor square of a prime-power group, Comm. Algebra 40 (2012), no. 2, 528-530.; Jafari, S. H., A bound on the order of non-abelian tensor square of a prime-power group, Comm. Algebra, 40, 2, 528-530 (2012) · Zbl 1239.20021 |
[23] | S. H. Jafari, Categorizing finite p-groups by the order of their non-abelian tensor squares, J. Algebra Appl. 15 (2016), no. 5, Article ID 1650095.; Jafari, S. H., Categorizing finite p-groups by the order of their non-abelian tensor squares, J. Algebra Appl., 15, 5 (2016) · Zbl 1339.20017 |
[24] | S. H. Jafari, P. Niroomand and A. Erfanian, The non-abelian tensor square and Schur multiplier of groups of orders p^2q and p^2qr, Algebra Colloq. 19 (2012), no. 1, 1083-1088.; Jafari, S. H.; Niroomand, P.; Erfanian, A., The non-abelian tensor square and Schur multiplier of groups of orders p^2q and p^2qr, Algebra Colloq., 19, 1, 1083-1088 (2012) · Zbl 1298.20038 |
[25] | S. H. Jafari, F. Saeedi and E. Khamseh, Characterization of finite p-groups by their non-abelian tensor square, Comm. Algebra 41 (2013), no. 5, 1954-1963.; Jafari, S. H.; Saeedi, F.; Khamseh, E., Characterization of finite p-groups by their non-abelian tensor square, Comm. Algebra, 41, 5, 1954-1963 (2013) · Zbl 1276.19002 |
[26] | R. James, The groups of order p^6 (p an odd prime), Math. Comp. 34 (1980), no. 150, 613-637.; James, R., The groups of order p^6 (p an odd prime), Math. Comp., 34, 150, 613-637 (1980) · Zbl 0428.20013 |
[27] | M. R. Jones, Some inequalities for the multiplicator of a finite group, Proc. Amer. Math. Soc. 39 (1973), 450-456.; Jones, M. R., Some inequalities for the multiplicator of a finite group, Proc. Amer. Math. Soc., 39, 450-456 (1973) · Zbl 0242.20006 |
[28] | M. R. Jones, Some inequalities for the multiplicator of a finite group. II, Proc. Amer. Math. Soc. 45 (1974), 167-172.; Jones, M. R., Some inequalities for the multiplicator of a finite group. II, Proc. Amer. Math. Soc., 45, 167-172 (1974) · Zbl 0262.20014 |
[29] | G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monogr. Ser. (N. S.) 2, Clarendon Press, New York, 1987.; Karpilovsky, G., The Schur Multiplier (1987) · Zbl 0619.20001 |
[30] | A. Lubotzky and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra 105 (1987), no. 2, 484-505.; Lubotzky, A.; Mann, A., Powerful p-groups. I. Finite groups, J. Algebra, 105, 2, 484-505 (1987) · Zbl 0626.20010 |
[31] | M. R. R. Moghaddam and P. Niroomand, Some properties of certain subgroups of tensor squares of p-groups, Comm. Algebra 40 (2012), no. 3, 1188-1193.; Moghaddam, M. R. R.; Niroomand, P., Some properties of certain subgroups of tensor squares of p-groups, Comm. Algebra, 40, 3, 1188-1193 (2012) · Zbl 1243.20022 |
[32] | P. Moravec, On the exponent semigroups of finite p-groups, J. Group Theory 11 (2008), no. 4, 511-524.; Moravec, P., On the exponent semigroups of finite p-groups, J. Group Theory, 11, 4, 511-524 (2008) · Zbl 1152.20017 |
[33] | P. Moravec, On the Schur multipliers of finite p-groups of given coclass, Israel J. Math. 185 (2011), 189-205.; Moravec, P., On the Schur multipliers of finite p-groups of given coclass, Israel J. Math., 185, 189-205 (2011) · Zbl 1259.20017 |
[34] | M. F. Newman, On coclass and trivial Schur multiplicator, J. Algebra 322 (2009), no. 3, 910-913.; Newman, M. F., On coclass and trivial Schur multiplicator, J. Algebra, 322, 3, 910-913 (2009) · Zbl 1196.20020 |
[35] | P. Niroomand, On the order of Schur multiplier of non-abelian p-groups, J. Algebra 322 (2009), no. 12, 4479-4482.; Niroomand, P., On the order of Schur multiplier of non-abelian p-groups, J. Algebra, 322, 12, 4479-4482 (2009) · Zbl 1186.20013 |
[36] | P. Niroomand, Characterizing finite p-groups by their Schur multipliers, C. R. Math. Acad. Sci. Paris 350 (2012), no. 19-20, 867-870.; Niroomand, P., Characterizing finite p-groups by their Schur multipliers, C. R. Math. Acad. Sci. Paris, 350, 19-20, 867-870 (2012) · Zbl 1259.20018 |
[37] | K. S. Ok, On p-groups of order p^4, Commun. Korean Math. Soc. 16 (2001), no. 2, 205-210.; Ok, K. S., On p-groups of order p^4, Commun. Korean Math. Soc., 16, 2, 205-210 (2001) · Zbl 1104.20302 |
[38] | P. K. Rai, A note on the order of the Schur multiplier of p-groups, Internat. J. Algebra Comput. 27 (2017), no. 5, 495-500.; Rai, P. K., A note on the order of the Schur multiplier of p-groups, Internat. J. Algebra Comput., 27, 5, 495-500 (2017) · Zbl 1371.20014 |
[39] | P. K. Rai, On the Schur multiplier of special p-groups, J. Pure Appl. Algebra 222 (2018), no. 2, 316-322.; Rai, P. K., On the Schur multiplier of special p-groups, J. Pure Appl. Algebra, 222, 2, 316-322 (2018) · Zbl 1373.20024 |
[40] | N. R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. (N. S.) 22 (1991), no. 1, 63-79.; Rocco, N. R., On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. (N. S.), 22, 1, 63-79 (1991) · Zbl 0791.20020 |
[41] | N. Sambonet, Bounds for the exponent of the Schur multiplier, J. Pure Appl. Algebra 221 (2017), no. 8, 2053-2063.; Sambonet, N., Bounds for the exponent of the Schur multiplier, J. Pure Appl. Algebra, 221, 8, 2053-2063 (2017) · Zbl 1384.20011 |
[42] | J. Schur, Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50.; Schur, J., Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen, J. Reine Angew. Math., 127, 20-50 (1904) · JFM 35.0155.01 |
[43] | J. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85-137.; Schur, J., Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math., 132, 85-137 (1907) · JFM 38.0174.02 |
[44] | M. Steeg, Finite P-Groups with Trivial Schur-Multiplier, ProQuest LLC, Ann Arbor, 1976.; Steeg, M., Finite P-Groups with Trivial Schur-Multiplier (1976) |
[45] | K. I. Tahara, On the second cohomology groups of semidirect products, Math. Z. 129 (1972), 365-379.; Tahara, K. I., On the second cohomology groups of semidirect products, Math. Z., 129, 365-379 (1972) · Zbl 0238.20068 |
[46] | J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110.; Whitehead, J. H. C., A certain exact sequence, Ann. of Math. (2), 52, 51-110 (1950) · Zbl 0037.26101 |
[47] | The GAP Group, Groups algorithms and programming. Version 4.8.10, (2018), .; Website |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.