×

Amenable upper mean dimensions. (English) Zbl 1480.37038

This paper is devoted to the notion of upper measure-theoretic mean dimension and to the variational principle of upper metric mean dimensions.
It is known that the entropy is the most important invariant to measure the complexity of dynamical systems. Furthermore, it plays an essential role in information theory, dimension theory and fractal geometry. A part of this paper is devoted to the concept of mean dimension, its applications, and variational principles. The main goal of this work is a formulation of upper metric mean dimension and upper measure-theoretic mean dimension for amenable group actions. A relation between upper metric mean dimensions and pseudo-orbits is also discussed.

MSC:

37C45 Dimension theory of smooth dynamical systems
37A25 Ergodicity, mixing, rates of mixing
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
28D20 Entropy and other invariants
37B65 Approximate trajectories, pseudotrajectories, shadowing and related notions for topological dynamical systems
Full Text: DOI

References:

[1] Barge, M.; Swanson, R., Pseudo-orbits and topological entropy, Proc. Am. Math. Soc., 109, 2, 559-566 (1990) · Zbl 0819.58022 · doi:10.1090/S0002-9939-1990-1012923-7
[2] Barbieri, S., García-Ramos, F., Li, H.: Markovian properties of continuous group actions: algebraic actions, entropy and the homoclinic group. Preprint ArXiV: 1911.00785v4 [Math.DS], (2020)
[3] Chen, E., Dou, D., Zheng, D.: Variational principles for amenable metric mean dimensions. Preprint ArXiV: 1708.02087 [Math.DS], (2017)
[4] Coornaert, M.; Krieger, F., Mean topological dimension for actions of discrete amenable groups, Dis. Contin. Dyn. Syst., 13, 779-793 (2005) · Zbl 1086.37003 · doi:10.3934/dcds.2005.13.779
[5] Catsigeras, E., Troubetzkoy, S.: Pseudo-physical measures for typical continuous maps of the interval. Preprint ArXiV: 1705.10133 [Math.DS], (2017) · Zbl 1431.37025
[6] Dou, D., Minimal subshifts of arbitrary mean topological dimension, Dis. Contin. Dyn. Syst., 37, 3, 1411-1424 (2017) · Zbl 1430.37018 · doi:10.3934/dcds.2017058
[7] Downarowicz, T.; Frej, B.; Romagnoli, P-P, Shearer’s inequality and infimum rule for Shannon entropy and topological entropy, Book Dyn. Numbers Contemp. Math., 669, 63-76 (2016) · Zbl 1376.37010
[8] Downarowicz, T., Huczek, D., Zhang, G.: Tilings of amenable groups, J. Reine Angew. Math., (to appear) · Zbl 1411.37017
[9] Gromov, M., Topological invariants of dynamical systems and spaces of holomorphic maps, Part I. Math. Phys. Anal. Geom., 2, 323-415 (1999) · Zbl 1160.37322 · doi:10.1023/A:1009841100168
[10] Gutman, Y.: Embedding topological dynamical systems with periodic points in cubical shifts. Ergodic Theory Dyn. Syst. 1-27, (2015) · Zbl 1435.37034
[11] Gutman, Y., Mean dimension and Jaworski-type theorems, Proc. Lond. Math. Soc., 111, 4, 831-850 (2015) · Zbl 1352.37017 · doi:10.1112/plms/pdv043
[12] Gutman, Y.; Lindenstrauss, E.; Tsukamoto, M., Mean dimension of \(\cal{Z}^k \)-actions, Geom. Funct. Anal., 26, 3, 778-817 (2016) · Zbl 1378.37056 · doi:10.1007/s00039-016-0372-9
[13] Gutman, Y.; Tsukamoto, M., Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts, Ergodic Theory Dyn. Syst., 34, 6, 1888-1896 (2014) · Zbl 1316.37012 · doi:10.1017/etds.2013.30
[14] Kerr, D.; Li, H., Ergodic Theory: Independence and Dichotomies (2017), Berlin: Springer, Berlin · Zbl 1396.37001
[15] Krieger, F., Groupes moyennables, dimension topologique moyenne et sous-décalages, Geom. Dedicata, 122, 15-31 (2006) · Zbl 1112.37007 · doi:10.1007/s10711-006-9071-2
[16] Krieger, F., Minimal systems of arbitrary large mean topological dimension, Israel J. Math., 172, 425-444 (2009) · Zbl 1178.37016 · doi:10.1007/s11856-009-0081-2
[17] Lindenstrauss, E., Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math., 89, 227-262 (1999) · Zbl 0978.54027 · doi:10.1007/BF02698858
[18] Li, H., Sofic mean dimension, Adv. Math., 244, 10, 570-604 (2013) · Zbl 1353.37018 · doi:10.1016/j.aim.2013.05.005
[19] Lindenstrauss, E., Pointwise theorems for amenable groups, Invent. Math., 146, 259-295 (2001) · Zbl 1038.37004 · doi:10.1007/s002220100162
[20] Lindenstrauss, E.; Tsukamoto, M., Mean dimension and an embedding problem: an example, Israel J. Math., 199, 2, 573-584 (2014) · Zbl 1301.37011 · doi:10.1007/s11856-013-0040-9
[21] Lindenstrauss, E.; Tsukamoto, M., From rate distortion theory to metric mean dimension: variational principle, IEEE Trans. Inform. Theory, 64, 3590-3609 (2018) · Zbl 1395.94215 · doi:10.1109/TIT.2018.2806219
[22] Lindenstrauss, E.; Weiss, B., Mean topological dimension, Israel J. Math., 115, 1-24 (2000) · Zbl 0978.54026 · doi:10.1007/BF02810577
[23] Ornstein, DS; Weiss, B., Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48, 1-141 (1987) · Zbl 0637.28015 · doi:10.1007/BF02790325
[24] Velozo, A., and Velozo, R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. Preprint ArXiV: 1707.05762 [Math.DS], (2017) · Zbl 1414.37021
[25] Weiss, B.: Actions of amenable groups, Topics in Dynamics and Ergodic Theory. (2003) 226-262. London Math. Soc. Lecture Note Ser., 310, Cambridge Univ. Press, Cambridge, (2003) · Zbl 1079.37002
[26] Yano, K., A remark on the topological entropy of homeomorphisms, Invent. Math., 59, 215-220 (1980) · Zbl 0434.54010 · doi:10.1007/BF01453235
[27] Zheng, D.; Chen, E.; Yang, J., On large deviations for amenable group actions, Dis. Contin. Dynam. Syst., 36, 7191-7206 (2016) · Zbl 1368.37007 · doi:10.3934/dcds.2016113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.