×

Artificial neural network joined with lattice Boltzmann method to study the effects of MHD on the slip velocity of FMWNT/water nanofluid flow inside a microchannel. (English) Zbl 1521.76662


MSC:

76M28 Particle methods and lattice-gas methods
68T07 Artificial neural networks and deep learning
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Abedi, M.; Asadi, A.; Vorotilo, S.; Mukasyan, A. S., A critical review on spark plasma sintering of copper and its alloys, J Mater Sci, 1-28 (2021)
[2] Karimipour, Arash, Simulation of copper-water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method, European J Mech B/Fluids, 49, 89-99 (2015)
[3] Karimipour, Arash; Afrand, Masoud, Magnetic field effects on the slip velocity and temperature jump of nanofluid forced convection in a microchannel, Proc Inst Mech Eng Part C J Mech Eng Sci, 230, 11, 1921-1936 (2016)
[4] Kalbasi, R., Introducing a novel heat sink comprising PCM and air-Adapted to electronic device thermal management, Int J Heat Mass Transfer, 169, Article 120914 pp. (2021)
[5] Khetib, Y.; Alahmadi, A. A.; Alzaed, A.; Tahmasebi, A.; Sharifpur, M.; Cheraghian, G., Natural convection and entropy generation of MgO/water nanofluids in the enclosure under a magnetic field and radiation effects, Processes, 9, 8, 1277 (2021), [Online]. Available
[6] Khetib, Y.; Alahmadi, A.; Alzaed, A.; Tahmasebi, A.; Sharifpur, M.; Cheraghian, G., Effects of different wall shapes on thermal-hydraulic characteristics of different channels filled with water based graphite-SiO2 hybrid nanofluid, Processes, 9, 7, 1253 (2021), [Online]Available
[7] Bahrami, D.; Bayareh, M., Impacts of channel wall twisting on the mixing enhancement of a novel spiral micromixer, Chem Pap, 1-12 (2021)
[8] Keyvani, N.; Azarniya, A.; Hosseini, H. R.M.; Abedi, M.; Moskovskikh, D., Thermal stability and strain sensitivity of nanostructured aluminum titanate (Al2TiO5), Mater Chem Phys, 223, 202-208 (2019)
[9] Torosyan, K. S., Reactive, nonreactive, and flash spark plasma sintering of Al2O3/SiC composites—A comparative study, J Am Ceram Soc, 103, 1, 520-530 (2020)
[10] Yu, H.; Duan, B.; Feng, L.; Kalbasi, R., Thermophysical properties improvement of a common liquid by adding reduced graphene oxide: an experimental study, Powder Technol, 384, 466-478 (2021), 2021/05/01/
[11] Yan, S.-R.; Kalbasi, R.; Karimipour, A.; Afrand, M., Improving the thermal conductivity of paraffin by incorporating MWCNTs nanoparticles, J Therm Anal Calorim, 145, 5, 2809-2816 (2021), 2021/09/01
[12] Karimipour, A., Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux, Phys A: Stat Mech Appl, 509, 729-745 (2018)
[13] Wei, H.; Afrand, M.; Kalbasi, R.; Ali, H. M.; Heidarshenas, B.; Rostami, S., The effect of tungsten trioxide nanoparticles on the thermal conductivity of ethylene glycol under different sonication durations: an experimental examination, Powder Technol, 374, 462-469 (2020), 2020/09/01/
[14] Bakhtiari, R.; Kamkari, B.; Afrand, M.; Abdollahi, A., Preparation of stable TiO2-Graphene/Water hybrid nanofluids and development of a new correlation for thermal conductivity, Powder Technol, 385, 466-477 (2021), 2021/06/01/
[15] Vorotilo, S.; Sidnov, K.; Sedegov, A. S.; Abedi, M.; Vorotilo, K.; Moskovskikh, D. O., Phase stability and mechanical properties of carbide solid solutions with 2-5 principal metals, Comput Mater Sci, 201, Article 110869 pp. (2022)
[16] Bayareh, M.; Dabiri, S.; Ardekani, A., Interaction between two drops ascending in a linearly stratified fluid, European J Mech B/Fluids, 60, 127-136 (2016) · Zbl 1408.76237
[17] Goodarzi, Z.; Nadooshan, A. A.; Bayareh, M., Numerical investigation of off-centre binary collision of droplets in a horizontal channel, J Brazilian Soc Mech Sci Eng, 40, 3, 1-10 (2018)
[18] Usefian, A.; Bayareh, M.; Shateri, A.; Taheri, N., Numerical study of electro-osmotic micro-mixing of Newtonian and non-Newtonian fluids, J Brazilian Soc Mech Sci Eng, 41, 5, 1-10 (2019)
[19] Masiri, S. M.; Bayareh, M.; Nadooshan, A. A., Pairwise interaction of drops in shear-thinning inelastic fluids, Korea-Australia Rheol J, 31, 1, 25-34 (2019)
[20] Bayareh, M.; Mortazavi, S., Effect of density ratio on the hydrodynamic interaction between two drops in simple shear flow, Iranian J Sci Technol Trans Mech Eng, 35, M2, 121 (2011) · Zbl 1356.76375
[21] Bayareh, M.; Mortazavi, S., Migration of a drop in simple shear flow at finite Reynolds numbers: size and viscosity ratio effects, (Proceeding of international conference on mechanical, industriel and manufacturing engineering (ICMIME) (2010), Citeseer: Citeseer Cape Town, South Africa), 287-293 · Zbl 1356.76375
[22] Shiriny, A.; Bayareh, M., Inertial focusing of CTCs in a novel spiral microchannel, Chem Eng Sci, 229, Article 116102 pp. (2021)
[23] Shiriny, A.; Bayareh, M.; Nadooshan, A. A., Combination of inertial focusing and magnetoporetic separation in a novel microdevice, Korean J Chem Eng, 1-17 (2021)
[24] Nguyen, Q.; Bahrami, D.; Kalbasi, R.; Bach, Q. V., Nanofluid flow through microchannel with a triangular corrugated wall: Heat transfer enhancement against entropy generation intensification, Math Methods Appl Sci (2020)
[25] Tiwary, B.; Kumar, R.; Singh, P. K., Thermofluidic characteristic of a nanofluid-cooled oblique fin heat sink: An experimental and numerical investigation, Int J Therm Sci, 171, Article 107214 pp. (2022)
[26] Chai, L.; Wang, L.; Bai, X., Thermohydraulic performance of microchannel heat sinks with triangular ribs on sidewalls-Part 2: average fluid flow and heat transfer characteristics, Int J Heat Mass Transfer, 128, 634-648 (2019)
[27] Ibáñez, G.; López, A.; Pantoja, J.; Moreira, J., Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation, Int J Heat Mass Transfer, 100, 89-97 (2016)
[28] Bahrami, D.; Nadooshan, A. A.; Bayareh, M., Numerical study on the effect of planar normal and Halbach magnet arrays on micromixing, Int J Chem Reactor Eng, 18, 9 (2020)
[29] Karimipour, A.; Bahrami, D.; Kalbasi, R.; Marjani, A., Diminishing vortex intensity and improving heat transfer by applying magnetic field on an injectable slip microchannel containing FMWNT/water nanofluid, J Therm Anal Calorim, 144, 6, 2235-2246 (2021), 2021/06/01
[30] Dinarvand, M.; Abolhasani, M.; Hormozi, F.; Bahrami, Z., Cooling capacity of magnetic nanofluid in presence of magnetic field based on first and second laws of thermodynamics analysis, Energy Sources Part A, 1-17 (2021)
[31] Dinarvand, M.; Abolhasani, M.; Hormozi, F.; Bahrami, Z., Effects of magnetic field gradient on heat transfer and irreversibility in a channel, Chem Eng Commun, 1-18 (2021)
[32] Huang, P.; Dong, G.; Zhong, X.; Pan, M., Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section, Chem Eng Process Process Intens, 147, Article 107769 pp. (2020)
[33] Karimipour, Arash, New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method, Int J Therm Sci, 91, 146-156 (2015)
[34] Amrollahi, A.; Rashidi, A.; Lotfi, R.; Meibodi, M. E.; Kashefi, K., Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region, Int Commun Heat Mass Transfer, 37, 6, 717-723 (2010)
[35] Afrand, M.; Karimipour, A.; Nadooshan, A. A.; Akbari, M., The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field, Physica E, 84, 474-481 (2016)
[36] Kim, D., Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Curr Appl Phys, 9, 2, 119-123 (2009)
[37] Karimipour, A.; Nezhad, A. H.; D’Orazio, A.; Shirani, E., Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method, Int J Therm Sci, 54, 142-152 (2012)
[38] D’Orazio, A.; Karimipour, A.; Mosavi, A., Develop lattice Boltzmann method and its related boundary conditions models for the benchmark oscillating walls by modifying hydrodynamic and thermal distribution functions, The European Phys J Plus, 135, 11, 1-18 (2020)
[39] Zhang, Y.; Xie, G.; Karimipour, A., Comprehensive analysis on the effect of asymmetric heat fluxes on microchannel slip flow and heat transfer via a lattice Boltzmann method, Int Commun Heat Mass Transfer, 118, Article 104856 pp. (2020)
[40] D’Orazio, A.; Karimipour, A., A useful case study to develop lattice Boltzmann method performance: gravity effects on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition, Int J Heat Mass Transfer, 136, 1017-1029 (2019)
[41] Nemati, M.; Sani, H. M.; Jahangiri, R.; Sefid, M.; Mohammad Sajadi, S.; Baleanu, D.; Ghaemi, F., Convection heat transfer under the effect of uniform and periodic magnetic fields with uniform internal heat generation: a new comprehensive work to develop the ability of the multi relaxation time lattice Boltzmann method, J Therm Anal Calorim, 1-15 (2021)
[42] Nemati, M.; Sefid, M.; Mohammad Sajadi, S.; Ghaemi, F.; Baleanu, D., Lattice Boltzmann method to study free convection and entropy generation of power-law fluids under influence of magnetic field and heat absorption/generation, J Therm Anal Calorim, 1-26 (2022)
[43] Javaherdeh, K.; Ashorynejad, H. R., Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method, Adv Powder Technol, 25, 2, 666-675 (2014)
[44] Cheng, L.; Zhu, Y.; Band, S. S.; Bahrami, D.; Kalbasi, R.; Karimipour, A.; Jahangiri, M.; Chau, K. W.; Mosavi, A., Role of gradients and vortexes on suitable location of discrete heat sources on a sinusoidal-wall microchannel, Eng Appl Comput Fluid Mech, 15, 1, 1176-1190 (2021)
[45] Han, L.; Lu, C.; Yumashev, A.; Bahrami, D.; Kalbasi, R.; Jahangiri, M.; Karimipour, A.; Band, S. S.; Chau, K. W.; Mosavi, A., Numerical investigation of magnetic field on forced convection heat transfer and entropy generation in a microchannel with trapezoidal ribs, Eng Appl Comput Fluid Mech, 15, 1, 1746-1760 (2021)
[46] Liu, S.; Bahrami, D.; Kalbasi, R.; Jahangiri, M.; Lu, Y.; Yang, X.; Band, S. S.; Chau, K. W.; Mosavi, A., Efficacy of applying discontinuous boundary condition on the heat transfer and entropy generation through a slip microchannel equipped with nanofluid, Eng Appl Comput Fluid Mech, 16, 1, 952-964 (2022)
[47] Karimipour, A.; Bahrami, D.; Kalbasi, R.; Marjani, A., Diminishing vortex intensity and improving heat transfer by applying magnetic field on an injectable slip microchannel containing FMWNT/water nanofluid, J Therm Anal Calorim, 144, 6, 2235-2246 (2021)
[48] Nguyen, Q.; Bahrami, D.; Kalbasi, R.; Bach, Q. V., Nanofluid flow through microchannel with a triangular corrugated wall: Heat transfer enhancement against entropy generation intensification, Math Methods Appl Sci (2020)
[49] Nguyen, Q.; Bahrami, D.; Kalbasi, R.; Karimipour, A., Functionalized multi-walled carbon nano tubes nanoparticles dispersed in water through an magneto hydro dynamic nonsmooth duct equipped with sinusoidal-wavy wall: diminishing vortex intensity via nonlinear Navier-Stokes equations, Math Methods Appl Sci (2020)
[50] Valizadeh Ardalan, M.; Alizadeh, R.; Fattahi, A.; Adelian Rasi, N.; Doranehgard, M. H.; Karimi, N., Analysis of unsteady mixed convection of Cu-water nanofluid in an oscillatory, lid-driven enclosure using lattice Boltzmann method, J Therm Anal Calorim, 145, 4, 2045-2061 (2021)
[51] Hunt, G.; Karimi, N.; Yadollahi, B.; Torabi, M., The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors, Int J Heat Mass Transfer, 134, 1227-1249 (2019)
[52] Hunt, Graeme; Karimi, Nader; Torabi, Mohsen, Analytical investigation of heat transfer and classical entropy generation in microreactors-The influences of exothermicity and asymmetry, Appl Therm Eng, 119, 403-424 (2017)
[53] Alizadeh, R.; Mohebbi Najm Abad, J.; Fattahi, A.; Alhajri, E.; Karimi, N., Application of machine learning to investigation of heat and mass transfer over a cylinder surrounded by porous media—the radial basic function network, J Energy Res Technol, 142, 11 (2020)
[54] Alizadeh, R.; Mohebbi Najm Abad, J.; Fattahi, A.; Mesgarpour, M.; Doranehgard, M. H.; Xiong, Q.; Karimi, N., Machine-Learning Enhanced Analysis of Mixed Biothermal Convection of Single Particle and Hybrid Nanofluids within a Complex Configuration, Ind Eng Chem Res (2021)
[55] Mahmoodi, M.; Esfe, M. H.; Akbari, M.; Karimipour, A.; Afrand, M., Magneto-natural convection in square cavities with a source-sink pair on different walls, Int J Appl Electromagnet Mech, 47, 1, 21-32 (2015)
[56] Afrand, M.; Karimipour, A.; Nadooshan, A. A.; Akbari, M., The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field, Physica E, 84, 474-481 (2016)
[57] Nojoomizadeh, M.; D’Orazio, A.; Karimipour, A.; Afrand, M.; Goodarzi, M., Investigation of permeability effect on slip velocity and temperature jump boundary conditions for FMWNT/Water nanofluid flow and heat transfer inside a microchannel filled by a porous media, Physica E, 97, 226-238 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.