×

Approximating spectral clustering via sampling: a review. (English) Zbl 1436.62446

Ros, Frédéric (ed.) et al., Sampling Techniques for supervised or unsupervised tasks. Cham: Springer. Unsuperv. Semi-Superv. Learn., 129-183 (2020).
Summary: Spectral clustering refers to a family of well-known unsupervised learning algorithms. Rather than attempting to cluster points in their native domain, one constructs a (usually sparse) similarity graph and computes the principal eigenvectors of its Laplacian. The eigenvectors are then interpreted as transformed points and fed into a k-means clustering algorithm. As a result of this non-linear transformation, it becomes possible to use a simple centroid-based algorithm in order to identify non-convex clusters, something that was otherwise impossible. Unfortunately, what makes spectral clustering so successful is also its Achilles heel: forming a graph and computing its dominant eigenvectors can be computationally prohibitive when dealing with more than a few tens of thousands of points. In this chapter, we review the principal research efforts aiming to reduce this computational cost. We focus on methods that come with a theoretical control on the clustering performance and incorporate some form of sampling in their operation. Such methods abound in the machine learning, numerical linear algebra, and graph signal processing literature and, among others, include Nyström-approximation, landmarks, coarsening, coresets, and compressive spectral clustering. We present the approximation guarantees available for each and discuss practical merits and limitations. Surprisingly, despite the breadth of the literature explored, we conclude that there is still a gap between theory and practice: the most scalable methods are only intuitively motivated or loosely controlled, whereas those that come with end-to-end guarantees rely on strong assumptions or enable a limited gain of computation time.
For the entire collection see [Zbl 1433.62016].

MSC:

62M15 Inference from stochastic processes and spectral analysis
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62-02 Research exposition (monographs, survey articles) pertaining to statistics

References:

[1] Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671-687 (2003) · Zbl 1054.68040 · doi:10.1016/S0022-0000(03)00025-4
[2] Ali, H.T., Couillet, R.: Improved spectral community detection in large heterogeneous networks. J. Mach. Learn. Res. 18(225), 1-49 (2018) · Zbl 1470.68070
[3] Altschuler, J., Bhaskara, A., Fu, G., Mirrokni, V., Rostamizadeh, A., Zadimoghaddam, M.: Greedy column subset selection: new bounds and distributed algorithms. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of the 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 48 , pp. 2539-2548, New York (2016)
[4] Anagnostopoulos, E., Emiris, I.Z., Psarros, I.: Low-quality dimension reduction and high-dimensional approximate nearest neighbor. In: Arge, L., Pach, J. (eds.) 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, vol. 34, pp. 436-450 (2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik · Zbl 1378.68148
[5] Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06) (2006) · Zbl 1192.68814
[6] Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027-1035. Society for Industrial and Applied Mathematics, Philadelphia (2007) · Zbl 1302.68273
[7] Arya, S., Mount, D.M., Netanyahu, D.M., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891-923 (1998) · Zbl 1065.68650 · doi:10.1145/293347.293348
[8] Aumüller, M., Bernhardsson, E., Faithfull, A.: ANN-benchmarks: a benchmarking tool for approximate nearest neighbor algorithms. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) Similarity Search and Applications, Cham, pp. 34-49, Springer, Berlin (2017)
[9] Avrithis, Y., Emiris, I.Z., Samaras, I.Z.: High-dimensional approximate nearest neighbor: k-d generalized randomized forests. arXiv:1603.09596 [cs] (2016)
[10] Bachem, O., Lucic, M., Hassani, H., Krause, A.: Fast and provably good seedings for k-means. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 55-63. Curran Associates, New York (2016)
[11] Bachem, O., Lucic, M., Krause, A.: Practical coreset constructions for machine learning. arXiv:1703.06476 [stat] (2017)
[12] Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable K-means++. Proc. VLDB Endow. 5(7), 622-633 (2012) · doi:10.14778/2180912.2180915
[13] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000) · Zbl 0965.65058 · doi:10.1137/1.9780898719581
[14] Bellec, P.C., Salmon, J., Vaiter, S.: A sharp oracle inequality for graph-slope. Electron. J. Stat. 11(2), 4851-4870 (2017) · Zbl 1382.62014 · doi:10.1214/17-EJS1364
[15] Bengio, Y., Delalleau, O., Roux, N.L.: Label propagation and quadratic criterion. In: Semi-Supervised Learning, pp. 193-216. MIT Press, Cambridge (2006)
[16] Bhatia, R.: Matrix Analysis, vol. 169. Springer Science & Business Media, New York (1997) · Zbl 0863.15001 · doi:10.1007/978-1-4612-0653-8
[17] Bie, T.D., Cristianini, N.: Fast SDP relaxations of graph cut clustering, transduction, and other combinatorial problems. J. Mach. Learn. Res. 7, 1409-1436 (2006) · Zbl 1222.68179
[18] Bordenave, C., Lelarge, M., Massoulié, L.: Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 1347-1357 (2015)
[19] Bouneffouf, D., Birol, I.: Sampling with minimum sum of squared similarities for Nystrom-based large scale spectral clustering. In: The International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2313-2319 (2015)
[20] Boutsidis, C., Drineas, P., Mahoney, M.W.: Unsupervised feature selection for the k-means clustering problem. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 153-161. Curran Associates, New York (2009)
[21] Boutsidis, C., Gittens, A., Kambadur, P.: Spectral clustering via the power method-provably. In: International Conference on Machine Learning (ICML) (2015)
[22] Boutsidis, C., Zouzias, A., Mahoney, M.W., Drineas, P.: Randomized dimensionality reduction for \(k\) -means clustering. IEEE Trans. Inf. Theory 61(2), 1045-1062 (2015) · Zbl 1359.62232 · doi:10.1109/TIT.2014.2375327
[23] Brand, M., Huang, K.: A unifying theorem for spectral embedding and clustering. In: 9th International Conference on Artificial Intelligence and Statistics, AISTATS (2003)
[24] Bresson, X., Laurent, T., Uminsky, D., von Brecht, J.: Multiclass total variation clustering. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 1421-1429. Curran Associates, New York (2013)
[25] Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD’10, Washington, p. 333. ACM Press, New York (2010)
[26] Calvetti, D., Reichel, L., Sorensen, D.C.: An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal. 2(1), 21 (1994) · Zbl 0809.65030
[27] Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200-210 (2013) · doi:10.1016/j.eswa.2012.07.021
[28] Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. MIT Press, Cambridge (2010)
[29] Chen, X., Cai, D.: Large scale spectral clustering with landmark-based representation. In: AAAI Conference on Artificial Intelligence (2011)
[30] Chen, S., Varma, R., Sandryhaila, A., Kovacevic, J.: Discrete signal processing on graphs: sampling theory. CoRR, abs/1503.05432 (2015) · Zbl 1395.94094
[31] Chitta, R., Jin, R., Jain, A.K.: Efficient kernel clustering using random Fourier features. In: 2012 IEEE 12th International Conference on Data Mining, pp. 161-170 (2012)
[32] Chung, F.R., Graham, F.C.: Spectral Graph Theory, vol. 92. American Mathematical Society, Providence (1997) · Zbl 0867.05046
[33] Cohen, M.B., Elder, S., Musco, C., Musco, C., Persu, M.: Dimensionality reduction for k-means clustering and low rank approximation. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC’15, New York, pp. 163-172. ACM. New York (2015) · Zbl 1321.68398
[34] Dall’Amico, L., Couillet, R., Tremblay, N.: Revisiting the Bethe-Hessian: improved community detection in sparse heterogeneous graphs. In: NeurIPS (2019)
[35] Dash, M., Koot, P.W.: Feature selection for clustering. In: Liu, L., özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1119-1125. Springer, Boston (2009)
[36] Davis, C.: The rotation of eigenvectors by a perturbation. J. Math. Anal. Appl. 6(2), 159-173 (1963) · Zbl 0115.10403 · doi:10.1016/0022-247X(63)90001-5
[37] Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 1117-1126. Society for Industrial and Applied Mathematics, Philadelphia (2006) · Zbl 1192.68889
[38] Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1944-1957 (2007) · doi:10.1109/TPAMI.2007.1115
[39] Di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval. Numer. Linear Algebra Appl. 23(4), 674-692 (2016) · Zbl 1413.65092 · doi:10.1002/nla.2048
[40] Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the 20th International Conference on World Wide Web - WWW’11, Hyderabad, p. 577. ACM Press, New York (2011)
[41] Drineas, P., Mahoney, M.W.: Lectures on randomized numerical linear algebra. Math. Data 25, 1 (2018) · Zbl 1448.68004 · doi:10.1090/pcms/025/01
[42] Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering in large graphs and matrices. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), vol. 99, pp. 291-299. Citeseer (1999) · Zbl 0938.68068
[43] Drineas, P., Kannan, R., Mahoney, M.W.: Fast Monte Carlo algorithms for matrices ii: computing a low-rank approximation to a matrix. SIAM J. Comput. 36(1), 158-183 (2006) · Zbl 1111.68148 · doi:10.1137/S0097539704442696
[44] Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. J. ACM 61(1), 1 (2014) · Zbl 1295.68213 · doi:10.1145/2529989
[45] Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pp. 569-578. ACM, New York (2011) · Zbl 1288.90046
[46] Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 298-305 (1973) · Zbl 0265.05119
[47] Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3-5), 75-174 (2010) · doi:10.1016/j.physrep.2009.11.002
[48] Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214-225 (2004) · doi:10.1109/TPAMI.2004.1262185
[49] Frahling, G., Sohler, C.: A fast k-means implementations using coresets. Int. J. Comput. Geom. Appl. 18(6), 605-625 (2008) · Zbl 1182.65034 · doi:10.1142/S0218195908002787
[50] Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-rank approximations. J. ACM 51(6), 1025-1041 (2004) · Zbl 1125.65005 · doi:10.1145/1039488.1039494
[51] Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest neighbor search with the navigating spreading-out graph. arXiv:1707.00143 [cs] (2017)
[52] Gadde, A., Anis, A., Ortega, A.: Active semi-supervised learning using sampling theory for graph signals. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’14, New York, pp. 492-501. ACM, New York (2014)
[53] Gadde, A., Gad, E.E., Avestimehr, S., Ortega, A.: Active learning for community detection in stochastic block models. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1889-1893 (2016)
[54] Gittens, A., Mahoney, M.W.: Revisiting the Nyström method for improved large-scale machine learning. J. Mach. Learn. Res. 17(1), 3977-4041 (2016) · Zbl 1367.68223
[55] Gribonval, R., Blanchard, G., Keriven, N., Traonmilin, Y.: Compressive statistical learning with random feature moments. arXiv:1706.07180 [cs, math, stat] (2017)
[56] Guattery, S., Miller, G.L.: On the performance of spectral graph partitioning methods. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms SODA, vol. 95, pp. 233-242 (1995) · Zbl 0847.05089
[57] Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19(3), 701-719 (1998) · Zbl 0905.05050 · doi:10.1137/S0895479896312262
[58] Halko, N., Martinsson, P., Tropp, J.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217-288 (2011) · Zbl 1269.65043 · doi:10.1137/090771806
[59] Hamerly, G., Drake, J.: Accelerating Lloyd’s Algorithm for k-Means Clustering, pp. 41-78. Springer, Cham (2015)
[60] He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, pp. 507-514 (2006)
[61] Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. Supercomputing 95(28), 1-14 (1995) · Zbl 0816.68093
[62] Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206-229 (2006) · Zbl 1189.60101 · doi:10.1214/154957806000000078
[63] Huang, L., Yan, D., Taft, N., Jordan, M.I.: Spectral clustering with perturbed data. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 21, pp. 705-712. Curran Associates, New York (2009)
[64] Hunter, B., Strohmer, T., Simos, T.E., Psihoyios, G., Tsitouras, C.: Compressive spectral clustering, pp. 1720-1722, Rhodes (2010)
[65] Isufi, E., Loukas, A., Simonetto, A., Leus, G.: Autoregressive moving average graph filtering. IEEE Trans. Signal Process. 65(2), 274-288 (2017) · Zbl 1414.94270 · doi:10.1109/TSP.2016.2614793
[66] Kalantidis, Y., Avrithis, Y.: Locally optimized product quantization for approximate nearest neighbor search. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
[67] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 881-892 (2002) · Zbl 1414.68128 · doi:10.1109/TPAMI.2002.1017616
[68] Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46-76 (2000) · Zbl 1094.68613 · doi:10.1145/331605.331608
[69] Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359-392 (1998) · Zbl 0915.68129 · doi:10.1137/S1064827595287997
[70] Keriven, N., Tremblay, N., Traonmilin, Y., Gribonval, R.: Compressive K-means. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6369-6373 (2017)
[71] Kolev, P., Mehlhorn, K.: A note on spectral clustering. arXiv preprint arXiv:1509.09188 (2015) · Zbl 1397.68144
[72] Koutis, I., Miller, G.L., Peng, R.: Approaching optimality for solving SDD linear systems. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 235-244 (2010) · Zbl 1310.68274
[73] Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., Zhang, P.: Spectral redemption in clustering sparse networks. Proc. Natl. Acad. Sci. 110(52), 20935-20940 (2013) · Zbl 1359.62252 · doi:10.1073/pnas.1312486110
[74] Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends Mach. Learn. 5(2-3), 123-286 (2012) · Zbl 1278.68240 · doi:10.1561/2200000044
[75] Kumar, A., Kannan, R.: Clustering with spectral norm and the k-means algorithm. In: 2010 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 299-308. IEEE, Piscataway (2010)
[76] Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1+𝜖)-approximation algorithm for k-means clustering in any dimensions. In: Proceedings of 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 454-462. IEEE, Piscataway (2004)
[77] Kumar, S., Mohri, M., Talwalkar, A.: Sampling techniques for the nystrom method. In: Artificial Intelligence and Statistics, pp. 304-311 (2009)
[78] Kumar, S., Mohri, M., Talwalkar, A.: Sampling methods for the nyström method. J. Mach. Learn. Res. 13, 981-1006 (2012) · Zbl 1283.68292
[79] Langberg, M., Schulman, L.J.: Universal 𝜖-approximators for integrals. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 598-607. SIAM, Philadelphia (2010) · Zbl 1288.68142
[80] Laurent, B., Massart, P.: Adaptive estimation of a quadratic functional by model selection. Ann. Stat. 28, 1302-1338 (2000) · Zbl 1105.62328 · doi:10.1214/aos/1015957395
[81] Le, Q., Sarlós, T., Smola, A.: Fastfood-approximating kernel expansions in loglinear time. In: Proceedings of the International Conference on Machine Learning, vol. 85 (2013)
[82] Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 801-808. MIT Press, Cambridge (2007)
[83] Lee, J.R., Gharan, S.O., Trevisan, L.: Multiway spectral partitioning and higher-order cheeger inequalities. J. ACM 61(6), 37 (2014) · Zbl 1321.05151 · doi:10.1145/2665063
[84] Lei, J., Rinaldo, A.: Consistency of spectral clustering in stochastic block models. Ann. Stat. 43(1), 215-237 (2015) · Zbl 1308.62041 · doi:10.1214/14-AOS1274
[85] Li, M., Lian, X.-C., Kwok, J., Lu, B.-L.: Time and space efficient spectral clustering via column sampling. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2297-2304. IEEE Computer Society, Washington (2011)
[86] Li, Q., Liu, W., Li, L., Wang, R.: Towards large scale spectral problems via diffusion process. In: 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1-7 (2017)
[87] Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129-137 (1982) · Zbl 0504.94015 · doi:10.1109/TIT.1982.1056489
[88] Lorenzo, P., Barbarossa, S., Banelli, P.: Chapter 9 - sampling and recovery of graph signals. In M. Djurić, P., Richard, C. (eds.), Cooperative and Graph Signal Processing, pp. 261-282. Academic Press, Cambridge (2018) · doi:10.1016/B978-0-12-813677-5.00009-2
[89] Loukas, A.: How close are the eigenvectors of the sample and actual covariance matrices? In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, International Convention Centre, Sydney, 6-11, vol. 70, pp. 2228-2237 (2017)
[90] Loukas, A.: Graph reduction with spectral and cut guarantees. arXiv preprint arXiv:1808.10650 (2018) · Zbl 1434.68366
[91] Loukas, A., Vandergheynst, P.: Spectrally approximating large graphs with smaller graphs. In: International Conference on Machine Learning (ICML) (2018)
[92] Loukas, A., Simonetto, A., Leus, G.: Distributed autoregressive moving average graph filters. IEEE Signal Process. Lett. 22(11), 1931-1935 (2015) · doi:10.1109/LSP.2015.2448655
[93] Makarychev, K., Makarychev, Y., Razenshteyn, I.: Performance of Johnson-Lindenstrauss transform for k-means and k-medians clustering. arXiv:1811.03195 [cs] (2018) · Zbl 1433.68366
[94] Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. arXiv:1603.09320 [cs], p. 13 (2016)
[95] Martin, L., Loukas, A., Vandergheynst, P.: Fast approximate spectral clustering for dynamic networks. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden. Proceedings of Machine Learning Research, vol. 80, pp. 3423-3432. PMLR (2018)
[96] Mohan, M., Monteleoni, C.: Beyond the nystrom approximation: speeding up spectral clustering using uniform sampling and weighted kernel k-means. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence IJCAI (2017)
[97] Mohan, M., Monteleoni, C.: Exploiting sparsity to improve the accuracy of nyström-based large-scale spectral clustering. In: 2017 International Joint Conference on Neural Networks (IJCNN) (2017)
[98] Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2227-2240 (2014) · doi:10.1109/TPAMI.2014.2321376
[99] Munteanu, A., Schwiegelshohn, C.: Coresets-methods and history: a theoreticians design pattern for approximation and streaming algorithms. Künstl. Intell. 32, 37-53 (2017) · doi:10.1007/s13218-017-0519-3
[100] Musco, C., Musco, C.: Recursive sampling for the nystrom method. In: Advances in Neural Information Processing Systems, pp. 3833-3845 (2017) · Zbl 1410.68399
[101] Newling, J., Fleuret, F.: Fast k-means with accurate bounds. In: International Conference on Machine Learning, pp. 936-944 (2016)
[102] Ng, A., Jordan, M., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2, 849-856 (2002)
[103] Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, pp. 2161-2168 (2006)
[104] Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of Lloyd-type methods for the k-means problem. In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 165-176 (2006) · Zbl 1281.68229
[105] Paratte, J., Martin, L.: Fast eigenspace approximation using random signals. arXiv preprint arXiv:1611.00938 (2016)
[106] Pena, R., Bresson, X., Vandergheynst, P.: Source localization on graphs via ℓ_1 recovery and spectral graph theory. In: 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1-5 (2016)
[107] Peng, R., Sun, H., Zanetti, L.: Partitioning well-clustered graphs: spectral clustering works! In: Conference on Learning Theory, pp. 1423-1455 (2015) · Zbl 1370.05204
[108] Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8 (2007)
[109] Puy, G., Tremblay, N., Gribonval, R., Vandergheynst, P.: Random sampling of bandlimited signals on graphs. Appl. Comput. Harmonic Anal. 44(2), 446-475 (2018) · Zbl 1391.94367 · doi:10.1016/j.acha.2016.05.005
[110] Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems, pp. 1177-1184 (2008)
[111] Ramasamy, D., Madhow, U.: Compressive spectral embedding: sidestepping the SVD. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28, pp. 550-558. Curran Associates, New York (2015)
[112] Rangapuram, S.S., Mudrakarta, P.K., Hein, M.: Tight continuous relaxation of the balanced k-cut problem. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 3131-3139. Curran Associates, New York (2014)
[113] Ros, F., Guillaume, S.: ProTraS: a probabilistic traversing sampling algorithm. Expert Syst. Appl. 105, 65-76 (2018) · doi:10.1016/j.eswa.2018.03.052
[114] Saade, A., Krzakala, F., Zdeborová, L.: Spectral clustering of graphs with the Bethe Hessian. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27 pp. 406-414. Curran Associates, Inc. (2014)
[115] Safro, I., Sanders, P., Schulz, C.: Advanced coarsening schemes for graph partitioning. J. Exp. Algorithmics 19, 2 (2015) · Zbl 1347.68355 · doi:10.1145/2670338
[116] Sakai, T., Imiya, A.: Fast spectral clustering with random projection and sampling. In: Perner, P. (ed) Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science, vol. 5632, pp. 372-384. Springer, Berlin (2009) · doi:10.1007/978-3-642-03070-3_28
[117] Sakiyama, A., Tanaka, Y., Tanaka, T., Ortega, T.: Eigendecomposition-free sampling set selection for graph signals. arXiv:1809.01827 [eess] (2018) · Zbl 1458.94123
[118] Sandryhaila, A., Moura, J.: Big data analysis with signal processing on graphs: representation and processing of massive data sets with irregular structure. IEEE Signal Process. Mag. 31(5), 80-90 (2014) · doi:10.1109/MSP.2014.2329213
[119] Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web - WWW’10, Raleigh, p. 1177. ACM Press, New York (2010)
[120] Sedley, D.: An introduction to Plato’s theory of forms. R. Inst. Philos. Suppl. 78, 3-22 (2016) · doi:10.1017/S1358246116000333
[121] Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888-905 (2000) · doi:10.1109/34.868688
[122] Shuman, D.I., Vandergheynst, P., Frossard, P.: Chebyshev polynomial approximation for distributed signal processing. In: 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), pp. 1-8. IEEE, Piscataway (2011)
[123] Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30(3), 83-98 (2013) · doi:10.1109/MSP.2012.2235192
[124] Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6), 1913-1926 (2011) · Zbl 1237.05129 · doi:10.1137/080734029
[125] Spielman, D.A., Teng, S.-H.: Spectral sparsification of graphs. SIAM J. Comput. 40(4), 981-1025 (2011) · Zbl 1228.68040 · doi:10.1137/08074489X
[126] Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585-591 (1997) · Zbl 0891.68071 · doi:10.1145/263867.263872
[127] Sutherland, D.J., Schneider, J.: On the error of random Fourier features. arXiv:1506.02785 [cs, stat] (2015)
[128] Tarsitano, A.: A computational study of several relocation methods for k-means algorithms. Pattern Recognit. 36(12), 2955-2966 (2003) · Zbl 1059.68116 · doi:10.1016/S0031-3203(03)00190-0
[129] Tremblay, N., Puy, G., Borgnat, P., Gribonval, R., Vandergheynst, P.: Accelerated spectral clustering using graph filtering of random signals. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016)
[130] Tremblay, N., Puy, G., Gribonval, R., Vandergheynst, P.: Compressive spectral clustering. In: 33rd International Conference on Machine Learning, New York (2016)
[131] Tremblay, N., Amblard, P.O., Barthelmé, S.: Graph sampling with determinantal processes. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1674-1678 (2017)
[132] Tremblay, N., Barthelme, S., Amblard, P.-O.: Optimized algorithms to sample determinantal point processes. arXiv:1802.08471 [cs, stat] (2018)
[133] Tremblay, N., Gonccalves, P., Borgnat, P.: Chapter 11 - design of graph filters and filterbanks. In: Djurić, P.M., Richard, C. (eds.) Cooperative and Graph Signal Processing, pp. 299-324. Academic Press, Cambridge (2018) · doi:10.1016/B978-0-12-813677-5.00011-0
[134] Tsitsvero, M., Barbarossa, S., Di Lorenzo, P.: Signals on graphs: uncertainty principle and sampling. IEEE Trans. Signal Process. 64(18), 4845-4860 (2016) · Zbl 1414.94874 · doi:10.1109/TSP.2016.2573748
[135] Ulrike von Luxburg, O.B., Belkin, M.: Consistency of spectral clustering. Ann. Stat. 36(2), 555-586 (2008) · Zbl 1133.62045
[136] Vishnoi, N.K., et al.: Lx= b. Found. Trends Theor. Comput. Sci. 8(1-2), 1-141 (2013)
[137] Vladymyrov, M., Carreira-Perpinan, M.A.: Fast, accurate spectral clustering using locally linear landmarks. In: 2017 International Joint Conference on Neural Networks, pp. 3870-3879 (2017)
[138] Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395-416 (2007) · doi:10.1007/s11222-007-9033-z
[139] Wagner, D., Wagner, F.: Between min cut and graph bisection. In: Borzyszkowski, A.M., Soko\lowski, S. (eds.), Mathematical Foundations of Computer Science 1993, Berlin, Heidelberg, pp. 744-750. Springer, Berlin (1993) · Zbl 0925.05053
[140] Wang, Y., Feng, Z.: Towards scalable spectral clustering via spectrum-preserving sparsification. arXiv preprint arXiv:1710.04584 (2017)
[141] Wang, L., Leckie, C., Ramamohanarao, K., Bezdek, J.: Approximate spectral clustering. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.), Advances in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, vol. 5476, pp. 134-146. Springer, Berlin (2009) · doi:10.1007/978-3-642-01307-2_15
[142] Wang, J., Wang, J., Ke, Q., Zeng, G., Li, S.: Fast approximate k-means via cluster closures. In: Multimedia Data Mining and Analytics, pp. 373-395. Springer, Berlin (2015)
[143] Wei, Y.-C., Cheng, C.-K.: Towards efficient hierarchical designs by ratio cut partitioning. In: 1989 IEEE International Conference on Computer-Aided Design(ICCAD), pp. 298-301 (1989)
[144] Wierzchoń, S.T., K\lopotek, M.A.: Spectral clustering. In: Modern Algorithms of Cluster Analysis, pp. 181-259. Springer, Cham (2018) · Zbl 1380.62010
[145] Woodruff, D.P., et al.: Sketching as a tool for numerical linear algebra. Found. Trends Theor. Comput. Sci. 10(1-2), 1-157 (2014) · Zbl 1316.65046 · doi:10.1561/0400000060
[146] Wu, L., Chen, P.-Y., Yen, I. E.-H., Xu, F., Xia, Y., Aggarwal, C.: Scalable spectral clustering using random binning features. arXiv:1805.11048 [cs, stat] (2018)
[147] Yan, D., Huang, D., Jordan, M.I.: Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’09, Paris, pp. 907-916. ACM, New York (2009)
[148] Zhang, K., Tsang, I.W., Kwok, J.T.: Improved nyström low-rank approximation and error analysis. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1232-1239. ACM, New York (2008)
[149] Zhao, Z.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.