×

An adaptive orthogonal improved interpolating moving least-square method and a new boundary element-free method. (English) Zbl 1428.74221

Summary: The improved interpolating moving least-square (IIMLS) method has been widely used in data fitting and meshfree methods, and the obtained shape functions have the property of the delta function, compared with those obtained by the moving least-square (MLS) method. However, the moment matrix in IIMLS may be singular or ill-conditioned because of the ill quality of the point sets used. In this paper, the weighted orthogonal basis functions are applied in IIMLS to obtain a diagonal moment matrix, which can overcome the difficulty caused by directly inversing singular or ill-conditioned matrices. However, the weighted orthogonal basis functions cannot change the nature of the singular or ill-conditioned moment matrix, since the diagonal elements of the new moment matrix may be zero or close to zero. Thus, an adaptive scheme is further employed to resolve this problem by ignoring the contribution from the zero or very small diagonal elements in the diagonal moment matrix. Combined with shifted and scaled polynomial basis functions, a stabilized adaptive orthogonal IIMLS (SAO-IIMLS) approximation is obtained. Based on this approximation, a new boundary element-free method is proposed for solving elasticity problems. Numerical results for curve fitting, surface fitting and the new boundary element-free method have shown that the proposed SAO-IIMLS approximation is accurate, stable and performs well for ill quality point sets.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs

Software:

Mfree2D; Matlab
Full Text: DOI

References:

[1] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comput., 37, 155, 141-158 (1981) · Zbl 0469.41005
[2] Mirzaei, D.; Schaback, R.; Dehghan, M., On generalized moving least squares and diffuse derivatives, Ima J. Numer. Anal., 32, 3, 983-1000 (2012) · Zbl 1252.65037
[3] Levin, D., The approximation power of moving least-squares, Math. Comput. Am. Math. Soc., 67, 224, 1517-1531 (1998) · Zbl 0911.41016
[4] Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C. T., Computing and rendering point set surfaces, IEEE Trans. Vis. Comput. Gr., 9, 1, 3-15 (2003)
[5] Liu, G. R., Mesh Free methods: Moving Beyond the Finite Element Method (2009), CRC Press: CRC Press Boca Raton
[6] Wang, Q.; Yang, H., A rigid-inclusion model for fiber-reinforced composites by fast multipole hybrid boundary node method, Eng. Anal. Bound. Elem., 54, 76-85 (2015) · Zbl 1403.74025
[7] Mirzaei, D., A greedy meshless local Petrov-Galerkin methodbased on radial basis functions, Numer. Meth. Part. Diff. Eq., 32, 3, 847-861 (2016) · Zbl 1339.65220
[8] Salehi, R.; Dehghan, M., A moving least square reproducing polynomial meshless method, Appl. Numer. Math., 69, 34-58 (2013) · Zbl 1284.65137
[9] Fasshauer, G. E., Meshfree Approximation Methods with MATLAB (2007), World Scientific: World Scientific Singapore · Zbl 1123.65001
[10] Belytschko, T.; Lu, Y. Y.; Gu, L., Element‐free Galerkin methods, Int. J. Numer. Meth. Eng., 37, 2, 229-256 (1994) · Zbl 0796.73077
[11] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech., 139, 1, 3-47 (1996) · Zbl 0891.73075
[12] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech., 139, 1, 49-74 (1996) · Zbl 0918.73329
[13] Mukherjee, Y. X.; Mukherjee, S., The boundary node method for potential problems, Int. J. Numer. Methods Eng., 40, 5, 797-815 (1997) · Zbl 0885.65124
[14] Chati, M. K.; Mukherjee, S., The boundary node method for three‐dimensional problems in potential theory, Int. J. Numer. Methods Eng., 47, 9, 1523-1547 (2000) · Zbl 0961.65100
[15] Yang, H.; Lu, H.; Chen, X., A general 2D meshless interpolating boundary node method based on the parameter space, Math. Probl. Eng., 2017 (2017) · Zbl 1426.74313
[16] Zhang, J.; Yao, Z.; Li, H., A hybrid boundary node method, Int. J. Numer. Meth. Eng., 53, 4, 751-763 (2002)
[17] Zhang, J.; Yao, Z., The regular hybrid boundary node method for three-dimensional linear elasticity, Eng. Anal. Bound. Elem., 28, 5, 525-534 (2004) · Zbl 1130.74492
[18] Wang, Q.; Miao, Y.; Zhu, H., A new formulation for thermal analysis of composites by hybrid boundary node method, Int. J. Heat Mass Transf., 64, 322-330 (2013)
[19] Miao, Y.; Wang, Q.; Zhu, H.; Li, Y., Thermal analysis of 3D composites by a new fast multipole hybrid boundary node method, Comput. Mech., 53, 1, 77-90 (2014) · Zbl 1398.74058
[20] Wang, Q.; Zheng, J.; Miao, Y.; Lv, J., The multi-domain hybrid boundary node method for 3D elasticity, Eng. Anal. Bound. Elem., 35, 6, 803-810 (2011) · Zbl 1259.74072
[21] Li, X., The meshless Galerkin boundary node method for Stokes problems in three dimensions, Int. J. Numer. Methods Eng., 88, 5, 442-472 (2011) · Zbl 1242.76244
[22] Li, X.; Zhu, J., A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math., 230, 1, 314-328 (2009) · Zbl 1189.65291
[23] Gu, Y.; Chen, W.; He, X.-Q., Singular boundary method for steady-state heat conduction in three dimensional general anisotropic media, Int. J. Heat Mass Transf., 55, 17, 4837-4848 (2012)
[24] Gu, Y.; Chen, W.; Zhang, C.-Z., Singular boundary method for solving plane strain elastostatic problems, Int. J. Solids Struct., 48, 18, 2549-2556 (2011)
[25] Gu, Y.; Chen, W.; Zhang, C.; He, X., A meshless singular boundary method for three-dimensional inverse heat conduction problems in general anisotropic media, Int. J. Heat Mass. Transf., 84, 91-102 (2015)
[26] Zhang, J.; Qin, X.; Han, X.; Li, G., A boundary face method for potential problems in three dimensions, Int. J. Numer. Methods Eng., 80, 3, 320-337 (2009) · Zbl 1176.74212
[27] Dehghan, M.; Abbaszadeh, M., Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems, Comput. Methods Appl. Mech., 328, 775-803 (2018) · Zbl 1439.82015
[28] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate, J. Comput. Appl. Math., 286, 211-231 (2015) · Zbl 1315.65086
[29] Kaljević, I.; Saigal, S., An improved element free Galerkin formulation, Int. J. Numer. Methods Eng., 40, 16, 2953-2974 (1997) · Zbl 0895.73079
[30] Wang, J.; Sun, F.; Cheng, Y., An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems, Chin. Phys. B, 21, 9, Article 090204 pp. (2012)
[31] Wang, J.; Wang, J.; Sun, F.; Cheng, Y., An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems, Int. J. Comput. Methods, 10, 06, Article 1350043 pp. (2013) · Zbl 1359.65282
[32] Li, X., An interpolating boundary element-free method for three-dimensional potential problems, Appl. Math. Model., 39, 10, 3116-3134 (2015) · Zbl 1443.65407
[33] Wang, Q.; Zhou, W.; Cheng, Y.; Ma, G.; Chang, X.; Liu, B., A NURBS-enhanced improved interpolating boundary element-free method for 2D potential problems and accelerated by fast multipole method, Eng. Anal. Bound. Elem., 98, 126-136 (2019) · Zbl 1404.74190
[34] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes: the Art of Scientific Computing (2007), Cambridge University Press: Cambridge University Press NewYork · Zbl 1132.65001
[35] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B (Methodol.), 267-288 (1996) · Zbl 0850.62538
[36] Zou, H.; Hastie, T., Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B (Stat. Methodol.)., 67, 2, 301-320 (2005) · Zbl 1069.62054
[37] Liu, G.; Gu, Y., A matrix triangularization algorithm for the polynomial point interpolation method, Comput. Methods Appl. Mech., 192, 19, 2269-2295 (2003) · Zbl 1074.74059
[38] Joldes, G. R.; Chowdhury, H. A.; Wittek, A.; Doyle, B.; Miller, K., Modified moving least squares with polynomial bases for scattered data approximation, Appl. Math. Comput., 266, 893-902 (2015) · Zbl 1410.65019
[39] Chowdhury, H. A.; Wittek, A.; Miller, K.; Joldes, G. R., An element free Galerkin method based on the modified moving least squares approximation, J. Sci. Comput., 71, 1197-1211 (2017) · Zbl 06759491
[40] Wang, Q.; Zhou, W.; Cheng, Y.; Ma, G.; Chang, X.; Miao, Y.; Chen, E., Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices, Appl. Math. Comput., 325, 120-145 (2018) · Zbl 1429.65042
[41] Lu, Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech., 113, 3, 397-414 (1994) · Zbl 0847.73064
[42] Liew, K.; Cheng, Y.; Kitipornchai, S., Boundary element‐free method (BEFM) and its application to two‐dimensional elasticity problems, Int. J. Numer. Methods Eng., 65, 8, 1310-1332 (2006) · Zbl 1147.74047
[43] Li, X.; Chen, H.; Wang, Y., Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method, Appl. Math. Comput., 262, 56-78 (2015) · Zbl 1410.65456
[44] Mirzaei, D., Analysis of moving least squares approximation revisited, J. Comput. Appl. Math., 282, 237-250 (2015) · Zbl 1309.65137
[45] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[46] Simpson, R. N.; Bordas, S. P.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech., 209, 87-100 (2012) · Zbl 1243.74193
[47] Gu, J.; Zhang, J.; Li, G., Isogeometric analysis in BIE for 3-D potential problem, Eng. Anal. Bound. Elem., 36, 5, 858-865 (2012) · Zbl 1352.65585
[48] Wang, D.; Xuan, J., An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions, Comput. Methods Appl. Mech., 199, 37, 2425-2436 (2010) · Zbl 1231.74498
[49] Wang, D.; Zhang, H., A consistently coupled isogeometric-meshfree method, Comput. Methods Appl. Mech., 268, 843-870 (2014) · Zbl 1295.65015
[50] Yao, Z.; Wang, H., Some benchmark problems and basic ideas on the accuracy of boundary element analysis, Eng. Anal. Bound. Elem., 37, 12, 1674-1692 (2013) · Zbl 1287.65129
[51] Yao, Z., A new type of high-accuracy BEM and local stress analysis of real beam, plate and shell structures, Eng. Anal. Bound. Elem., 65, 1-17 (2016) · Zbl 1403.74260
[52] Zhang, J.; Han, L.; Lin, W.; Dong, Y.; Ju, C., A new implementation of BEM by an expanding element interpolation method, Eng. Anal. Bound. Elem., 78, 1-7 (2017) · Zbl 1403.74005
[53] Zhang, J.; Dong, Y.; Ju, C.; Lin, W., A new singular element for evaluating stress intensity factors of V-shaped notches under mixed-mode load, Eng. Anal. Bound. Elem., 93, 161-166 (2018) · Zbl 1403.74263
[54] Wang, Q.; Zhou, W.; Cheng, Y.; Ma, G.; Chang, X., A line integration method for the treatment of 3D domain integrals and accelerated by the fast multipole method in the BEM, Comput. Mech., 59, 4, 611-624 (2017) · Zbl 1398.65326
[55] Zhou, W.; Liu, B.; Wang, Q.; Cheng, Y.; Ma, G.; Chang, X.; Chen, X., NURBS-enhanced boundary element method based on independent geometry and field approximation for 2D potential problems, Eng. Anal. Bound. Elem., 83, 158-166 (2017) · Zbl 1403.65248
[56] Garmanjani, G.; Cavoretto, R.; Esmaeilbeigi, M., A RBF partition of unity collocation method based on finite difference for initial-boundary value problems, Comput. Math. Appl., 75, 11, 4066-4090 (2018) · Zbl 1419.65078
[57] Cheney, E. W., Multivariate Approximation Theory: Selected Topics (1986), SIAM: SIAM Philadelphia · Zbl 0606.41001
[58] Allasia, G., Cardinal basis interpolation on multivariate scattered data, Nonlinear Anal. Forum., 6, 1, 1-13 (2001) · Zbl 0986.41003
[59] Li, X.; Li, S., On the stability of the moving least squares approximation and the element-free Galerkin method, Comput. Math. Appl., 72, 6, 1515-1531 (2016) · Zbl 1361.65090
[60] Wang, Q.; Zhou, W.; Cheng, Y.; Ma, G.; Chang, X.; Chen, E., NE-IIBEFM for problems with body forces: a seamless integration of the boundary type meshfree method and the NURBS boundary in CAD, Adv. Eng. Softw., 118, 1-17 (2018)
[61] Cavoretto, R.; De Rossi, A., Numerical comparison of different weights in Shepard’s interpolants on the sphere, Appl. Math. Sci., 4, 3425-3435 (2010) · Zbl 1243.65022
[62] Kounchev, O., Multivariate polysplines: Applications to Numerical and Wavelet Analysis (2001), Academic Press · Zbl 0983.41001
[63] Allasia, G., Recursive and parallel algorithms for approximating surface data on a family of lines or curves, Advanced Mathematical and Computational Tools In Metrology VI, 137-148 (2004), World Scientific: World Scientific NJ
[64] Allasia, G.; Besenghi, R.; Cavoretto, R.; De Rossi, A., Scattered and track data interpolation using an efficient strip searching procedure, Appl. Math. Comput., 217, 12, 5949-5966 (2011) · Zbl 1213.65023
[65] Gu, Y.; Liu, G., A boundary point interpolation method for stress analysis of solids, Comput. Mech., 28, 1, 47-54 (2002) · Zbl 1115.74380
[66] Joldes, G. R.; Wittek, A.; Miller, K., Stable time step estimates for mesh‐free particle methods, Int. J. Numer. Methods Eng., 91, 4, 450-456 (2012) · Zbl 1253.74130
[67] Joldes, G. R.; Wittek, A.; Miller, K., Adaptive numerical integration in Element-Free Galerkin methods for elliptic boundary value problems, Eng. Anal. Bound. Elem., 51, 52-63 (2015) · Zbl 1403.65138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.