×

Stress singularity analysis for the V-notch with a novel semi-Analytical boundary element. (English) Zbl 07855365

MSC:

74-XX Mechanics of deformable solids
81-XX Quantum theory
Full Text: DOI

References:

[1] Lazzarin, P.; Filippi, S., A generalized stress intensity factor to be applied to rounded V-shaped notches, Int J Solids Struct, 43, 2461-2478, 2006 · Zbl 1120.74502
[2] Zappalorto, M.; Lazzarin, P.; Berto, F., Elastic notch stress intensity factors for sharply V-notched rounded bars under torsion, Eng Fract Mech, 76, 439-453, 2009
[3] Zappalorto, M.; Lazzarin, P.; Yates, J. R., Elastic stress distributions for hyperbolic and parabolic notches in round shafts under torsion and uniform antiplane shear loadings, Int J Solids Struct, 45, 4879-4901, 2008 · Zbl 1169.74339
[4] Williams, M. L., Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J Appl Mech, 19, 526-528, 1952
[5] Williams, M. L., On the stress distribution at the base of a stationary crack, J Appl Mech, 24, 109-114, 1957 · Zbl 0077.37902
[6] Gross, B.; Mendelson, A., Plane elastostatic analysis of V-notched plates, Int J Fract Mech, 8, 267-276, 1972
[7] Seweryn, A.; Molski, K., Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions, Eng Fract Mech, 55, 529-556, 1996
[8] Kazberuk, A.; Savruk, M. P.; Chornenkyi, A. B., Stress distribution at sharp and rounded V-notches in quasi-orthotropic plane, Int J Solids Struct, 85-86, 134-143, 2016
[9] Kotousov, A.; Lew, Y. T., Stress singularities resulting from various boundary conditions in angular corners of plates of arbitrary thickness in extension, Int J Solids Struct, 43, 5100-5109, 2006 · Zbl 1120.74493
[10] Bogy, D. B., Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions, J Appl Mech, 38, 377-386, 1971
[11] Qian, J.; Hasebe, N., Property of eigenvalues and eigenfunctions for an interface V-notch in antiplane elasticity, Eng Fract Mech, 56, 729-734, 1997
[12] Wu, Z. G.; Liu, Y. H., Analytical solution for the singular stress distribution due to V-notch in an orthotropic plate material, Eng Fract Mech, 75, 2367-2384, 2008
[13] Wu, Z. G.; Liu, Y. H., Asymptotic fields near an interface corner in orthotropic bi-materials, Int J Fract, 156, 37-51, 2009 · Zbl 1273.74114
[14] Niu, Z. R.; Cheng, C. Z.; Ye, J. Q.; Recho, N., A new boundary element approach of modeling singular stress fields of plane V-notch problems, Int J Solids Struct, 46, 2999-3008, 2009 · Zbl 1167.74590
[15] Yao, S. L.; Cheng, C. Z.; Niu, Z. R.; Recho, N., Singularity analysis for 2D and 3D thermoelastic media containing V-notches, J Therm Stresses, 39, 1356-1366, 2016
[16] Pageau, S. S.; Joseph, P. F.; Biggers, S. B., Finite element analysis of anisotropic materials with singular inplane stress fields, Int J Solids Struct, 32, 571-591, 1995 · Zbl 0918.73265
[17] Liu, G. R.; Nourbakhshnia, N.; Zhang, Y. W., A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems, Eng Fract Mech, 78, 863-876, 2011
[18] Xuan, H. N.; Liu, G. R.; Nourbakhshnia, N.; Chen, L., A novel singular ES-FEM for crack growth simulation, Eng Fract Mech, 84, 41-66, 2012
[19] Nourbakhshnia, N.; Liu, G. R., A quasi-static crack growth simulation based on the singular ES-FEM, Int J Numer Meth Eng, 88, 473-492, 2011 · Zbl 1242.74144
[20] Dunn, M. L.; Suwito, W.; Cunningham, S., Stress intensities at notch singularities, Eng Fract Mech, 57, 417-430, 1997
[21] Chen, M. C.; Sze, K. Y., A novel hybrid finite element analysis of bimaterial wedge problems, Eng Fract Mech, 68, 1463-1476, 2001
[22] Treifi, M.; Oyadiji, S. O., Bi-material V-notch stress intensity factors by the fractal-like finite element method, Eng Fract Mech, 105, 221-237, 2013
[23] Ping, X. C.; Chen, M. C.; Noda, N. A.; Xiao, Y. H., Analysis of generalized stress intensity factors of V-shaped notch problems by FEM, Int J Comp Meth, 10, Article 1350068 pp., 2013 · Zbl 1359.74435
[24] Deng, H. C.; Yan, B.; Zhang, X. M.; Zhu, Y. Q., A new enrichment scheme for the interfacial crack modeling using the XFEM, Theor Appl Fract Mech, 122, Article 103595 pp., 2022
[25] Yao, W. A.; Zhang, Z. J.; Hu, X. F., A singular element for reissner plate bending problem with V-shaped notches, Theor Appl Fract Mech, 74, 143-156, 2014
[26] Ru, Z. L.; Zhao, H. B.; Yin, S. D., Evaluation of mixed-mode stress intensity factors by extended finite element method, J Cent South Univ, 20, 1420-1425, 2013
[27] Hu, X. F.; Yao, W. A., A novel singular finite element on mixed-mode bimaterial interfacial cracks with arbitrary crack surface tractions, Int J Fract, 172, 41-52, 2011 · Zbl 1306.74060
[28] Mi, Y.; Aliabadi, M. H., Dual boundary element method for three-dimensional fracture mechanics analysis, Eng Anal Bound Elem, 10, 161-171, 1992
[29] Portela, A.; Aliabadi, M. H.; Rooke, D. P., The dual boundary element method: effective implementation for crack problems, Int J Numer Meth Eng, 33, 1269-1287, 1992 · Zbl 0825.73908
[30] Mi, Y.; Aliabadi, M. H., Three-dimensional crack growth simulation using BEM, Comput Struct, 52, 871-878, 1994 · Zbl 0900.73900
[31] Peng, X.; Atroshchenko, E.; Kerfriden, P.; Bordas, S. P.A, Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth, Comput Method Appl M, 316, 151-185, 2017 · Zbl 1439.74370
[32] Xie, G. Z.; Zhang, J. M.; Huang, C.; Lu, C. J.; Li, G. Y., A direct traction boundary integral equation method for three-dimension crack problems in infinite and finite domains, Comput Mech, 53, 575-586, 2014 · Zbl 1398.74445
[33] Matos, P. F.P.; Moreira, P. M.G. P.; Portela, A.; Castro, P. M.S. T., Dual boundary element analysis of cracked plates: post-processing implementation of the singularity subtraction technique, Comput Struct, 82, 1443-1449, 2004
[34] Simpson, R.; Trevelyan, J., Evaluation of J_1 and J_2 integrals for curved cracks using an enriched boundary element method, Eng Fract Mech, 78, 623-637, 2011
[35] Simpson, R.; Trevelyan, J., A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics, Comput Method Appl M, 200, 1-10, 2011 · Zbl 1225.74117
[36] Alatawi, I. A.; Trevelyan, J., A direct evaluation of stress intensity factors using the extended dual boundary element method, Eng Anal Bound Elem, 52, 56-63, 2015 · Zbl 1403.74142
[37] Han, Z. L.; Cheng, C. Z.; Yao, S. L.; Niu, Z. R., Determination of stress intensity factors of V-notch structures by characteristic analysis coupled with isogeometric boundary element method, Eng Fract Mech, 222, Article 106717 pp., 2019
[38] Gu, Y.; Zhang, C. Z., Novel special crack-tip elements for interface crack analysis by an efficient boundary element method, Eng Fract Mech, 239, Article 107302 pp., 2020
[39] Zhang, J. M.; Dong, Y. Q.; Ju, C. M.; Lin, W. C., A new singular element for evaluating stress intensity factors of V-shaped notches under mixed-mode load, Eng Anal Bound Elem, 93, 161-166, 2018 · Zbl 1403.74263
[40] Gu, Y.; Zhang, C. Z., Fracture analysis of ultra-thin coating/substrate structures withinterface cracks, Int J Solids Struct, 225, Article 111074 pp., 2021
[41] Xie, G. Z.; Zhang, D. H.; Meng, F. N.; Du, W. L.; Zhang, J. M., Calculation of stress intensity factor along the 3D crack front by dual BIE with new crack front elements, Acta Mech, 228, 3135-3153, 2017 · Zbl 1469.74112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.