×

A general unsteady Fourier solution for orthotropic heat transfer in 2D functionally graded cylinders. (English) Zbl 07861232

MSC:

80M22 Spectral, collocation and related (meshless) methods applied to problems in thermodynamics and heat transfer
80M20 Finite difference methods applied to problems in thermodynamics and heat transfer
35Q79 PDEs in connection with classical thermodynamics and heat transfer
Full Text: DOI

References:

[1] A. H.Mohazzab and M.Jabbari, Two‐dimensional stresses in a hollow FG Sphere with heat source, In Advanced materials research, Vol. 264, Trans. Tech. Publications, 2011, 700-705.
[2] H.Ding, H.Wang, and W.Chen, Dynamic responses of a functionally graded pyroelectric hollow sphere for spherically symmetric problems, Int. J. Mech. Sci.45 (2003), no. 6-7, 1029-1051. · Zbl 1073.74026
[3] A.Amiri Delouei, A.Emamian, S.Karimnejad, H.Sajjadi, and D.Jing, Two‐dimensional temperature distribution in FGM sectors with the power‐law variation in radial and circumferential directions, J. Thermal Anal. Calorimetry144 (2021), no. 3, 611-621.
[4] A. A.Delouei, A.Emamian, S.Karimnejad, and H.Sajjadi, A closed‐form solution for axisymmetric conduction in a finite functionally graded cylinder, Int. Commun. Heat Mass Transf.108 (2019), 104280.
[5] A.Amiri Delouei, A.Emamian, H.Sajjadi, M.Atashafrooz, Y.Li, L. P.Wang, D.Jing, and G.Xie, A comprehensive review on multi‐dimensional heat conduction of multi‐layer and composite structures: analytical solutions, J. Therm. Sci.30 (2021), no. 6, 1875-1907.
[6] V.Birman, T.Keil, and S.Hosder, Functionally graded materials in engineering, Struct. Interface Attach. Biol. (2013), 19-41.
[7] B.Yildirim, S.Dag, and F.Erdogan, Three dimensional fracture analysis of FGM coatings under thermomechanical loading, Int. J. Fract.132 (2005), no. 4, 371-397. · Zbl 1196.74232
[8] W.Pompe, H.Worch, M.Epple, W.Friess, M.Gelinsky, P.Greil, U.Hempel, D.Scharnweber, and K.Schulte, Functionally graded materials for biomedical applications, Mater. Sci. Eng. A362 (2003), no. 1-2, 40-60.
[9] F.Watari, A.Yokoyama, M.Omori, T.Hirai, H.Kondo, M.Uo, and T.Kawasaki, Biocompatibility of materials and development to functionally graded implant for bio‐medical application, Compos. Sci. Technol.64 (2004), no. 6, 893-908.
[10] R. M.Mahamood and E. T.Akinlabi, Types of functionally graded materials and their areas of application, In Functionally graded materials, Springer, 2017, 9-21.
[11] R. M.Mahamood and E. T.Akinlabi, Introduction to functionally graded materials, In Functionally graded materials, Springer, 2017, 1-8.
[12] H.Awaji, Temperature and stress distributions in a plate of functionally graded materials, in Fourth international congress on thermal stresses, June, (2001), 8‐11.
[13] B.‐L.Wang and Y.‐W.Mai, Transient one‐dimensional heat conduction problems solved by finite element, Int. J. Mech. Sci.47 (2005), no. 2, 303-317. · Zbl 1192.74094
[14] B.‐L.Wang, Y.‐W.Mai, and X.‐H.Zhang, Thermal shock resistance of functionally graded materials, Acta Mater.52 (2004), no. 17, 4961-4972.
[15] Y. J.Xu, L. L.Wang, and H. Y.Du, Analysis of heating steady temperature field in an Al1100/Ti‐6Al‐4V/SiC 2D‐FGM plane plate by FEM, In Key engineering materials, Vol. 450, Trans Tech Publ, 2011, 235-238.
[16] H.Zhang, S.Han, L.Fan, and D.Huang, The numerical manifold method for 2D transient heat conduction problems in functionally graded materials, Eng. Anal. Bound. Elem.88 (2018), 145-155. · Zbl 1403.74135
[17] S.Kumar and V. R.Kar, Three‐dimensional thermal analysis of multidirectional (perfect/porous) functionally graded plate under in‐plane heat flux, Mater. Today: Proc.56 (2022), 879-882.
[18] B.Chen and L.Tong, Sensitivity analysis of heat conduction for functionally graded materials, Mater. Des.25 (2004), no. 8, 663-672.
[19] S.Ghorbani, A.Jabari Moghadam, A.Emamian, R.Ellahi, and S. M.Sait, Numerical simulation of the electroosmotic flow of the Carreau‐Yasuda model in the rectangular microchannel, Int. J. Numer. Methods Heat Fluid Flow32 (2022), no. 7, 2240-2259.
[20] S.Ghorbani, A.Emamian, A.Amiri Delouei, R.Ellahi, S. M.Sait, and M. B.Ben Hamida, Transient heat transfer and electro‐osmotic flow of Carreau-Yasuda non‐Newtonian fluid through a rectangular microchannel, Int. J. Numer. Method Heat Fluid Flow33 (2023), no. 7, 2439-2454.
[21] F.He, A.Amiri Delouei, R.Ellahi, S. Z.Alamri, A.Emamian, and S.Ghorbani, Unsteady temperature distribution in a cylinder made of functionally graded materials under circumferentially‐varying convective heat transfer boundary conditions, Zeitschrift für Naturforschung A78 (2023), 893-906.
[22] M. H.Shojaeefard and A.Najibi, Nonlinear transient heat conduction analysis of hollow thick temperature‐dependent 2D‐FGM cylinders with finite length using numerical method, J. Mech. Sci. Technol.28 (2014), no. 9, 3825-3835.
[23] J.Sladek, V.Sladek, and C.Zhang, A local BIEM for analysis of transient heat conduction with nonlinear source terms in FGMs, Eng. Anal. Bound. Elem.28 (2004), no. 1, 1-11. · Zbl 1053.80007
[24] M.Asgari and M.Akhlaghi, Transient heat conduction in two‐dimensional functionally graded hollow cylinder with finite length, Heat Mass Transf.45 (2009), no. 11, 1383-1392.
[25] H.Awaji and R.Sivakumar, Temperature and stress distributions in a hollow cylinder of functionally graded material: the case of temperature‐independent material properties, J. Am. Ceram. Soc.84 (2001), no. 5, 1059-1065.
[26] W.‐Z.Xu, Z.‐J.Fu, and Q.Xi, A novel localized collocation solver based on a radial Trefftz basis for thermal conduction analysis in FGMs with exponential variations, Comput. Math. Appl.117 (2022), 24-38. · Zbl 1524.65471
[27] S. M.Hosseini, M.Akhlaghi, and M.Shakeri, Transient heat conduction in functionally graded thick hollow cylinders by analytical method, Heat Mass Transf.43 (2007), no. 7, 669-675.
[28] M.Jabbari, A.Mohazzab, and A.Bahtui, One‐dimensional moving heat source in a hollow FGM cylinder, J. Press. Vessel Technol.131 (2009), no. 2, 021202.
[29] J.Sladek, V.Sladek, C.Hellmich, and J.Eberhardsteiner, Heat conduction analysis of 3‐D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method, Comput. Mech.39 (2007), no. 3, 323-333. · Zbl 1169.80001
[30] S. M.Hosseini and M. H.Abolbashari, A unified formulation for the analysis of temperature field in a thick hollow cylinder made of functionally graded materials with various grading patterns, Heat Transf. Eng.33 (2012), no. 3, 261-271.
[31] H.Wang, An effective approach for transient thermal analysis in a functionally graded hollow cylinder, Int. J. Heat Mass Transf.67 (2013), 499-505.
[32] S.‐Y.Lee and C.‐C.Huang, Analytic solutions for heat conduction in functionally graded circular hollow cylinders with time‐dependent boundary conditions, Math. Probl. Eng.2013 (2013), 1-8. · Zbl 1299.80008
[33] K.Daneshjou, M.Bakhtiari, R.Alibakhshi, and M.Fakoor, Transient thermal analysis in 2D orthotropic FG hollow cylinder with heat source, Int. J. Heat Mass Transf.89 (2015), 977-984.
[34] M. P.Yaghoobi and M.Ghannad, An analytical solution for heat conduction of FGM cylinders with varying thickness subjected to non‐uniform heat flux using a first‐order temperature theory and perturbation technique, Int. Commun. Heat Mass Transf.116 (2020), 104684.
[35] A. A.Delouei, A.Emamian, S.Karimnejad, H.Sajjadi, and D.Jing, Asymmetric conduction in an infinite functionally graded cylinder: two‐dimensional exact analytical solution under general boundary conditions, J. Heat Transfer142 (2020), no. 4, 044505.
[36] A. A.Delouei, A.Emamian, S.Karimnejad, H.Sajjadi, and D.Jing, Two‐dimensional analytical solution for temperature distribution in FG hollow spheres: general thermal boundary conditions, Int. Commun. Heat Mass Transf.113 (2020), 104531.
[37] A. A.Delouei, A.Emamian, S.Karimnejad, H.Sajjadi, and A.Tarokh, On 2D asymmetric heat conduction in functionally graded cylindrical segments: a general exact solution, Int. J. Heat Mass Transf.143 (2019), 118515.
[38] M.Akbari, Y.Kiani, and M.Eslami, Thermal buckling of temperature‐dependent FGM conical shells with arbitrary edge supports, Acta. Mech.226 (2015), no. 3, 897-915. · Zbl 1317.74062
[39] A.Amiri Delouei, A.Emamian, S.Karimnejad, and Y.Li, An exact analytical solution for heat conduction in a functionally graded conical shell, J. Appl. Comput. Mech.9 (2023), no. 2, 302‐317.
[40] J.Torabi, Y.Kiani, and M.Eslami, Linear thermal buckling analysis of truncated hybrid FGM conical shells, Compos. Part B. Eng.50 (2013), 265-272.
[41] A.Emamian, A.Amiri Delouei, S.Karimnejad, and H.Sajadi, Analytical solution of heat transfer in a cone made of functionally graded material, Amirkabir J. Mech. Eng.53 (2021), no. 1 (Special Issue), 539-552.
[42] A.Emamian, A.Amiri Delouei, S.Karimnejad, and D.Jing, Analytical solution for temperature distribution in functionally graded cylindrical shells under convective cooling, Math. Meth. Appl. Sci.46 (2023), no. 10, 11442-11461. · Zbl 1531.35118
[43] A.Emamian, M.Norouzi, and M.Davoodi, Drops with circular stagnation lines: combined effects of viscoelastic and inertial forces on drop shape, J. Non‐Newton. Fluid. Mech.304 (2022), 104795.
[44] M.Mehregan, M.Sheykhi, A.Emamian, and M.Delpisheh, Technical and economic modeling and optimization of a Ford‐Philips engine for power production, Appl. Therm. Eng.213 (2022), 118761.
[45] M.Mehregan, M.Sheykhi, B. A.Kharkeshi, A.Emamian, K.Aliakbari, and N.Rafiee, Performance analysis and optimization of combined heat and power system based on PEM fuel cell and β type Stirling engine, Energ. Conver. Manage.283 (2023), 116874.
[46] A. A.Delouei, M.Kayhani, and M.Norouzi, Exact analytical solution of unsteady axi‐symmetric conductive heat transfer in cylindrical orthotropic composite laminates, Int. J. Heat Mass Transf.55 (2012), no. 15-16, 4427-4436.
[47] M.Kayhani, M.Norouzi, and A. A.Delouei, A general analytical solution for heat conduction in cylindrical multilayer composite laminates, Int. J. Thermal Sci.52 (2012), 73-82.
[48] M.Li and A. C.Lai, Analytical solution to heat conduction in finite hollow composite cylinders with a general boundary condition, Int. J. Heat Mass Transf.60 (2013), 549-556.
[49] R.Bahadur and A.Bar‐Cohen, Orthotropic thermal conductivity effect on cylindrical pin fin heat transfer, in International Electronic Packaging Technical Conference and Exhibition, 42002 (2005), 245-252.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.