×

Galerkin-based quasi-smooth manifold element (QSME) method for anisotropic heat conduction problems in composites with complex geometry. (English) Zbl 1537.74352

Summary: The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method (FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element (QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional (2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity. The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom (DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F05 Thermal effects in solid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] Zhang, S.; Li, X.; Zuo, J.; Qin, J.; Cheng, K.; Feng, Y.; Bao, W., Research progress on active thermal protection for hypersonic vehicles, Progress in Aerospace Sciences, 119, 100646 (2020) · doi:10.1016/j.paerosci.2020.100646
[2] Culler, A. J.; Mcnamara, J. J., Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels, AIAA Journal, 49, 2393-2406 (2011) · doi:10.2514/1.J050617
[3] Pantangi, V. K.; Mishra, S. C.; Muthukumar, P.; Reddy, R., Studies on porous radiant burners for LPG (liquefied petroleum gas) cooking applications, Energy, 36, 6074-6080 (2011) · doi:10.1016/j.energy.2011.08.008
[4] Gromann, D.; Juttler, B.; Schlusnus, H.; Barner, J.; Vuong, A. V., Isogeo-metric simulation of turbine blades for aircraft engines, Computer Aided Geometric Design, 29, 519-531 (2012) · Zbl 1250.65025 · doi:10.1016/j.cagd.2012.03.002
[5] Hahn, D. W.; Ozisik, M. N., Heat Conduction (2012), Hoboken, New Jersey: John Wiley & Sons, Hoboken, New Jersey · doi:10.1002/9781118411285
[6] Wang, B. L.; Mai, Y. W., Transient one-dimensional heat conduction problems solved by finite element, International Journal of Mechanical Sciences, 47, 303-317 (2005) · Zbl 1192.74094 · doi:10.1016/j.ijmecsci.2004.11.001
[7] Yao, X.; Wang, Y.; Leng, J., A general finite element method: extension of variational analysis for nonlinear heat conduction with temperature-dependent properties and boundary conditions, and its implementation as local refinement, Computers & Mathematics with Applications, 100, 11-29 (2021) · Zbl 1524.74450 · doi:10.1016/j.camwa.2021.08.024
[8] Bakalakos, S.; Kalogeris, I.; Papadopoulos, V., An extended finite element method formulation for modeling multi-phase boundary interactions in steady state heat conduction problems, Composite Structures, 258, 113202 (2021) · doi:10.1016/j.compstruct.2020.113202
[9] Kubacka, E.; Ostrowski, P., Heat conduction issue in biperiodic composite using finite difference method, Composite Structures, 261, 113310 (2021) · doi:10.1016/j.compstruct.2020.113310
[10] Wu, X. H.; Tao, W. Q., Meshless method based on the local weak-forms for steady-state heat conduction problems, International Journal of Heat and Mass Transfer, 51, 3103-3112 (2008) · Zbl 1144.80356 · doi:10.1016/j.ijheatmasstransfer.2007.08.021
[11] Meng, Z.; Ma, Y.; Ma, L., A fast interpolating meshless method for 3D heat conduction equations, Engineering Analysis with Boundary Elements, 145, 352-362 (2022) · Zbl 1539.80015 · doi:10.1016/j.enganabound.2022.09.028
[12] Singh, A.; Singh, I. V.; Prakash, R., Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, International Journal of Heat and Mass Transfer, 50, 1212-1219 (2007) · Zbl 1124.80366 · doi:10.1016/j.ijheatmasstransfer.2006.08.039
[13] Bartwal, N.; Shahane, S.; Roy, S.; Vanka, S. P., Application of a high order accurate meshless method to solution of heat conduction in complex geometries, Computational Thermal Sciences, 14, 3, 1-27 (2022) · doi:10.1615/ComputThermalScien.2022039458
[14] Tan, F.; Tong, D.; Liang, J.; Yi, X.; Jiao, Y. Y.; Lv, J., Two-dimensional numerical manifold method for heat conduction problems, Engineering Analysis with Boundary Elements, 137, 119-138 (2022) · Zbl 1521.80037 · doi:10.1016/j.enganabound.2022.02.004
[15] Zhang, H. H.; Han, S. Y.; Fan, L. F.; Huang, D., The numerical manifold method for 2D transient heat conduction problems in functionally graded materials, Engineering Analysis with Boundary Elements, 88, 145-155 (2018) · Zbl 1403.74135 · doi:10.1016/j.enganabound.2018.01.003
[16] Wen, W.; Jian, K.; Luo, S., 2D numerical manifold method based on quartic uniform B-spline interpolation and its application in thin plate bending, Applied Mathematics and Mechanics (English Edition), 34, 1017-1030 (2013) · Zbl 1286.74123 · doi:10.1007/s10483-013-1724-x
[17] Wang, Z. P.; Turteltaub, S.; Abdalla, M., Shape optimization and optimal control for transient heat conduction problems using an isogeometric approach, Computers & Structures, 185, 59-74 (2017) · doi:10.1016/j.compstruc.2017.02.004
[18] Yu, T.; Chen, B.; Natarajan, S.; Bui, T. Q., A locally refined adaptive isogeometric analysis for steady-state heat conduction problems, Engineering Analysis with Boundary Elements, 117, 119-131 (2020) · Zbl 1464.65191 · doi:10.1016/j.enganabound.2020.05.005
[19] Zang, Q.; Liu, J.; Ye, W.; Lin, G., Isogeometric boundary element for analyzing steady-state heat conduction problems under spatially varying conductivity and internal heat source, Computers & Mathematics with Applications, 80, 1767-1792 (2020) · Zbl 1451.65216 · doi:10.1016/j.camwa.2020.08.009
[20] Yoon, M.; Ha, S. H.; Cho, S., Isogeometric shape design optimization of heat conduction problems, International Journal of Heat and Mass Transfer, 62, 272-285 (2013) · doi:10.1016/j.ijheatmasstransfer.2013.02.077
[21] Shi, G. H., Manifold method of material analysis (1991), Minnesota: U. S. Army Research office, Mineapolis, Minnesota
[22] He, J.; Liu, Q.; Wu, Z.; Xu, X., Modelling transient heat conduction of granular materials by numerical manifold method, Engineering Analysis with Boundary Elements, 86, 45-55 (2018) · Zbl 1403.80004 · doi:10.1016/j.enganabound.2017.10.011
[23] Dong, K.; Zhang, J.; Jin, L.; Gu, B.; Sun, B., Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites, Composite Structures, 143, 9-22 (2016) · doi:10.1016/j.compstruct.2016.02.029
[24] Kreith, F.; Manglik, R. M., Principles of Heat Transfer (2017), Mason, OH: Cengage Learning, Mason, OH
[25] Belhamadia, Y.; Seaid, M., Computing enhancement of the nonlinear SP_N approximations of radiative heat transfer in participating material, Journal of Computational and Applied Mathematics, 434, 115342 (2023) · Zbl 07715682 · doi:10.1016/j.cam.2023.115342
[26] Malek, M.; Izem, N.; Mohamed, M. S.; Seaid, M.; Laghrouche, O., A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients, Journal of Computational Physics, 396, 702-717 (2019) · Zbl 1452.65244 · doi:10.1016/j.jcp.2019.06.062
[27] Malek, M.; Izem, N.; Mohamed, M. S.; Seaid, M., A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials, International Journal of Heat and Mass Transfer, 155, 119804 (2020) · doi:10.1016/j.ijheatmasstransfer.2020.119804
[28] Diwan, G. C.; Mohamed, M. S.; Seaid, M.; Trevelyan, J.; Laghrouche, O., Mixed enrichment for the finite element method in heterogeneous media, International Journal for Numerical Methods in Engineering, 101, 54-78 (2015) · Zbl 1352.74344 · doi:10.1002/nme.4795
[29] Pan, C. T.; Hocheng, H., Evaluation of anisotropic thermal conductivity for unidirectional FRP in laser machining, Composites Part A: Applied Science and Manufacturing, 32, 1657-1667 (2001) · doi:10.1016/S1359-835X(00)00093-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.