×

On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution. (English) Zbl 1401.62216

Summary: In this paper, we consider Sarmanov’s multivariate discrete distribution as counting distribution in two multivariate compound models: the first model assumes different types of independent claim sizes (corresponding to, e.g., different types of insurance policies), while in the second model, we introduce some dependency between the claims (motivated by the events that can simultaneously affect several types of policies). Since Sarmanov’s distribution can join different types of marginals, we also assume that these marginals belong to Panjer’s class of distributions and discuss the evaluation of the resulting compound distribution based on recursions. Alternatively, the evaluation of the same distribution using the fast Fourier transform method is also presented, with the purpose to significantly reduce the computing time, especially in the dependency case. Both methods are numerically illustrated and compared from the point of view of speed and accuracy.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62H05 Characterization and structure theory for multivariate probability distributions; copulas
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI

References:

[1] Bahraoui, Z.; Bolance, C.; Pelican, E.; Vernic, R., On the bivariate Sarmanov distribution and copula. An application on insurance data using truncated marginal distributions, SORT, 39, 2, 209-230 (2015) · Zbl 1396.60016
[2] Bairamov, I.; Kotz, S.; Gebizlioglu, O. L., The Sarmanov family and its generalization, South African Statist. J., 35, 2, 205-224 (2001) · Zbl 1009.62011
[3] Bargès, M.; Cossette, H.; Marceau, E., TVaR-based capital allocation with copulas, Insurance Math. Econom., 45, 3, 348-361 (2009) · Zbl 1231.91141
[4] Bolance, C., Vernic, R., 2017. Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution. XREAP2017-07 (available at SSRN: https://ssrn.com/abstract=3069467; Bolance, C., Vernic, R., 2017. Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution. XREAP2017-07 (available at SSRN: https://ssrn.com/abstract=3069467 · Zbl 1415.62077
[5] Briggs, W. L.; Henson, V. E., The DFT: An Owners’ Manual for the Discrete Fourier Transform (1995), Siam · Zbl 0827.65147
[6] Cossette, H.; Côté, . M.-P.; Marceau, E.; Moutanabbir, K., Multivariate distribution defined with Farlie-Gumbel-Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation, Insurance Math. Econom., 52, 560-572 (2013) · Zbl 1284.60027
[7] Danaher, P. J.; Smith, M. S., Modeling multivariate distributions using copulas: applications in marketing, Mark. Sci., 30, 1, 4-21 (2011)
[8] Embrechts, P.; Frei, M., Panjer recursion versus FFT for compound distributions, Math. Methods Oper. Res., 69, 3, 497-508 (2009) · Zbl 1205.91081
[9] Grubel, R.; Hermesmeier, R., Computation of compound distributions I: aliasing errors and exponential tilting, Astin Bull., 29, 2, 197-214 (1999)
[10] Grubel, R.; Hermesmeier, R., Computation of compound distributions II: discretization errors and Richardson extrapolation, Astin Bull., 30, 2, 309-331 (2000) · Zbl 1106.62347
[11] Hashorva, E.; Ratovomirija, G., On Sarmanov mixed Erlang risks in insurance applications, Astin Bull., 45, 01, 175-205 (2015) · Zbl 1390.62208
[12] Henrici, P., Applied and Computational Complex Analysis, Vol. 1 (1988), Wiley: Wiley New York · Zbl 0635.30001
[13] Hernández-Bastida, A.; Fernández-Sánchez, M., A Sarmanov family with beta and gamma marginal distributions: an application to the Bayes premium in a collective risk model, Stat. Methods Appl., 21, 391-409 (2013) · Zbl 1332.62042
[14] Hernández-Bastida, A.; Fernández-Sánchez, M.; Gómez-Déniz, E., The net Bayes premium with dependence between the risk profiles, Insurance Math. Econom., 45, 247-254 (2009) · Zbl 1231.91198
[15] Hesselager, O., A recursive procedure for calculation of some compound distributions, Astin Bull., 24, 01, 19-32 (1994)
[16] Hofer, V.; Leitner, J., A bivariate Sarmanov regression model for count data with generalised Poisson marginals, J. Appl. Stat., 39, 12, 2599-2617 (2012) · Zbl 1514.62140
[17] Jin, T.; Ren, J., Recursions and fast Fourier transforms for a new bivariate aggregate claims model, Scand. Actuar. J., 8, 729-752 (2014) · Zbl 1401.91151
[18] Johnson, N. L.; Kotz, S.; Balakrishnan, N., Discrete Multivariate Distributions (1997), Wiley: Wiley New York · Zbl 0868.62048
[19] Kotz, S.; Balakrishnan, N.; Johnson, N. L., Continuous Multivariate Distributions. Vol. 1: Models and Applications (2000), Wiley: Wiley New York · Zbl 0946.62001
[20] Lee, M. L., Properties and applications of the Sarmanov family of bivariate distributions, Comm. Statist. Theory Methods, 25, 6, 1207-1222 (1996) · Zbl 0875.62205
[21] Panjer, H. H., Recursive evaluation of a family of compound distributions, Astin Bull., 12, 01, 22-26 (1981)
[22] Panjer, H. H.; Willmot, G. E., Recursions for compound distributions, Astin Bull., 13, 01, 1-12 (1982)
[23] Ratovomirija, G., On mixed Erlang reinsurance risk: aggregation, capital allocation and default risk, Eur. Actuar. J., 6, 1, 149-175 (2016) · Zbl 1415.91162
[24] Ratovomirija, G.; Tamraz, M.; Vernic, R., On some multivariate Sarmanov mixed Erlang reinsurance risks: aggregation and capital allocation, Insurance Math. Econom., 74, 197-209 (2017) · Zbl 1394.62145
[25] Robe-Voinea, E. G.; Vernic, R., On a multivariate aggregate claims model with multivariate Poisson counting distribution, Proc. Rom. Acad. Ser. A, 18, 1, 3-7 (2017) · Zbl 1413.62186
[26] Robe-Voinea, E.; Vernic, R., Another approach to the evaluation of a certain multivariate compound distribution, An. Sti. U. Ovid. Co.-Mat., 24, 3, 339-349 (2016) · Zbl 1389.62167
[27] Robe-Voinea, E. G.; Vernic, R., Fast Fourier transform for multivariate aggregate claims, Comput. Appl. Math (2016), online first · Zbl 1395.62329
[28] Sarmanov, O. V., Generalized normal correlation and two-dimensional Frechet classes, (Doclady (Soviet Mathematics), Vol. 168 (1966)), 596-599 · Zbl 0203.20001
[29] Shubina, M.; Lee, M. L., On maximum attainable correlation and other measures of dependence for the Sarmanov family of bivariate distributions, Comm. Statist. Theory Methods, 33, 5, 1031-1052 (2004) · Zbl 1114.62334
[30] Sundt, B., On multivariate Panjer recursions, Astin Bull., 29, 1, 29-45 (1999)
[31] Sundt, B.; Vernic, R., (Recursions for Convolutions and Compound Distributions with Insurance Applications. Recursions for Convolutions and Compound Distributions with Insurance Applications, EAA Lectures Notes (2009), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1175.60004
[32] Vernic, R., On the distribution of a sum of Sarmanov distributed random variables, J. Theoret. Probab., 29, 1, 118-142 (2016) · Zbl 1336.60024
[33] Vernic, R., Capital allocation for Sarmanov’s class of distributions, Methodol. Comput. Appl. Probab., 19, 1, 311-330 (2017) · Zbl 1358.60034
[34] Willmot, G. E.; Panjer, H. H., Difference equation approaches in evaluation of compound distributions, Insurance Math. Econom., 6, 1, 43-56 (1987) · Zbl 0613.62020
[35] Wong, M. W., Discrete Fourier Analysis (2011), Springer: Springer Basel · Zbl 1226.42001
[36] Yang, Y.; Hashorva, E., Extremes and products of multivariate AC-product risks, Insurance Math. Econom., 52, 312-319 (2013) · Zbl 1284.60108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.