×

On dynamics of double-diffusive magneto-convection in a non-Newtonian fluid layer. (English) Zbl 1531.35254

MSC:

35Q35 PDEs in connection with fluid mechanics
76A05 Non-Newtonian fluids
76R10 Free convection
76R50 Diffusion
35B32 Bifurcations in context of PDEs
35A24 Methods of ordinary differential equations applied to PDEs
15A18 Eigenvalues, singular values, and eigenvectors
58J35 Heat and other parabolic equation methods for PDEs on manifolds
Full Text: DOI

References:

[1] H.Bénard, Les tourbillons cellulaires dans une nappe liquide. ‐ méthodes optiques d observation et denregistrement, J. de Physique Théorique et Appliquée10 (1901), no. 1, 254-266.
[2] L.Rayleigh, LIX. on convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, The London, Edinburgh, Dublin Phil. Mag. J. Sci.32 (1916), no. 192, 529-546. · JFM 46.1249.04
[3] S.Chandrasekhar, Hydrodynamic and hydromagnetic stability, Clarendon Press, 1961. · Zbl 0142.44103
[4] H.Jeffreys, The stability of a layer of fluid heated below, The London, Edinburgh, Dublin Phil. Mag. J. Sci.2 (1926), no. 10, 833-844. · JFM 52.0862.01
[5] A.Pellew and R. V.Southwell, On maintained convective motion in a fluid heated from below, Proc. Royal Soc. London. Ser. A. Math. Phys. Sci.176 (1940), no. 966, 312-343. · JFM 66.1389.01
[6] T.Ma and S.Wang, Dynamic transition theory for thermohaline circulation, Phys. D: Nonlinear Phen.239 (2010), no. 3‐4, 167-189. · Zbl 1190.37084
[7] K.Zhang, Nonlinear magnetohydrodynamic convective flows in the earth’s fluid core, Phys. Earth and Planet. Inter.111 (1999), no. 1‐2, 93-103.
[8] T.Sengul, Dynamical transition theory of hexagonal pattern formations, Commun. Nonlinear Sci. Numer. Simul.91 (2020), 105455. · Zbl 1456.37103
[9] S.Ozer and T.Sengul, Transitions of spherical thermohaline circulation to multiple equilibria, J. Math. Fluid Mech.20 (2017), no. 2, 499-515. · Zbl 1458.76046
[10] H.Dijkstra, T.Sengul, and S.Wang, Dynamic transitions of surface tension driven convection, Phys. D: Nonlinear Phen.247 (2013), no. 1, 7-17. · Zbl 1308.76103
[11] M. E.Stern, The salt‐fountain and thermohaline convection, Tellus12 (1960), no. 2, 172-175.
[12] C. F.Chen and D. H.Johnson, Double‐diffusive convection: a report on an engineering foundation conference, J. Fluid Mech.138 (1984), 405-416.
[13] R. W.Schmitt, The characteristics of salt fingers in a variety of fluid systems, including stellar interiors, liquid metals, oceans, and magmas, Phys. Fluids26 (1983), no. 9, 2373. · Zbl 0523.76074
[14] J. S.Turner, Multicomponent convection, Ann. Rev. Fluid Mech.17 (1985), no. 1, 11-44.
[15] J. S.Turner, Double‐diffusive phenomena, Ann. Rev. Fluid Mech.6 (1974), no. 1, 37-54. · Zbl 0312.76028
[16] J. K.Platten and J. C.Legros, Convection in liquids, Springer‐Verlag, 1984. · Zbl 0545.76048
[17] P.Garaud, Double‐diffusive convection, EAS Publ. Ser.63 (2013), 285-295.
[18] H. E.Huppert and J. S.Turner, Double‐diffusive convection, J. Fluid Mech.106 (1981), no. ‐1, 299. · Zbl 0461.76076
[19] I. S.Shivakumara and S. B. N.Kumar, Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer, Int. J. Heat Mass Transfer68 (2014), 542-553.
[20] C.‐H.Hsia, T.Ma, and S.Wang, Attractor bifurcation of three‐dimensional double‐diffusive convection, Zeitschrift für Analysis und ihre Anwendungen27 (2008), 233-252. · Zbl 1146.35313
[21] C.‐H.Hsia, T.Ma, and S.Wang, Bifurcation and stability of two‐dimensional double‐diffusive convection, Commun. Pure Appl. Anal.7 (2008), no. 1, 23-48. · Zbl 1139.37048
[22] T.Ma and S.Wang, Phase transition dynamics, Springer International Publishing, 2019.
[23] S.Wang and T.Ma, Bifurcation theory and applications, WORLD SCIENTIFIC PUB CO INC, 2005. https://www.ebook.de/de/product/4497541/shouhong_wang_tian_ma_bifurcation_theory_and_applications.html · Zbl 1085.35001
[24] M. R. E.Proctor and N. O.Weiss, Magnetoconvection, Rep. Progress Phys.45 (1982), no. 11, 1317-1379.
[25] S.Wang and T.Sengul, Pattern formation and dynamic transition for magnetohydrodynamic convection, Commun. Pure Appl. Anal.13 (2014), no. 6, 2609-2639. · Zbl 1305.76130
[26] S.Özer, T.Şengül, and Q.Wang, Multiple equilibria and transitions in spherical MHD equations, Commun. Math. Sci.17 (2019), no. 6, 1531-1555. DOI 10.4310/CMS.2019.v17.n6.a3 · Zbl 1428.76232
[27] L.Li, Y.Fan, D.Han, and Q.Wang, Dynamical transition and bifurcation of hydromagnetic convection in a rotating fluid layer, Commun. Nonlinear Sci. Numer. Simul.112 (2022), 106531. · Zbl 1506.35167
[28] V. K.Stokes, Couple stresses in fluids, Phys. Fluids9 (1966), no. 9, 1709.
[29] Sunil, R.Devi, and A.Mahajan, Global stability for thermal convection in a couple‐stress fluid, Int. Commun. Heat Mass Transfer38 (2011), no. 7, 938-942.
[30] R. C.Sharma and K. D.Thakur, On couple‐stress fluid heated from below in porous medium in hydromagnetics, Czechoslovak J. Phys.50 (2000), no. 6, 753-758.
[31] M. S.Malashetty, S. N.Gaikwad, and M.Swamy, An analytical study of linear and non‐linear double diffusive convection with Soret effect in couple stress liquids, Int. J. Thermal Sci.45 (2006), no. 9, 897-907.
[32] S. N.Gaikwad, M. S.Malashetty, and K. R.Prasad, An analytical study of linear and non‐linear double diffusive convection with Soret and Dufour effects in couple stress fluid, Int. J. Non‐Linear Mech.42 (2007), no. 7, 903-913.
[33] S. B. N.Kumar, I. S.Shivakumara, and B. M.Shankar, Exploration of coriolis force on the linear stability of couple stress fluid flow induced by double diffusive convection, J. Heat Transfer141 (2019), 12.
[34] Z.Pan, L.Jia, Y.Mao, and Q.Wang, Transitions and bifurcations in couple stress fluid saturated porous media using a thermal non‐equilibrium model, Appl. Math. Comput.415 (2022), 126727. · Zbl 1510.35242
[35] S. B. N.Kumar, I. S.Shivakumara, and B. M.Shankar, Linear and weakly nonlinear double‐diffusive magnetoconvection in a non‐newtonian fluid layer, Microgravity Sci. Technol.32 (2020), no. 4, 629-646.
[36] S.Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer New York, 2003. https://www.ebook.de/de/product/3671706/stephen_wiggins_introduction_to_applied_nonlinear_dynamical_systems_and_chaos.html · Zbl 1027.37002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.