×

The topologies of local convergence in measure on the algebras of measurable operators. (English. Russian original) Zbl 1518.46040

Sib. Math. J. 64, No. 1, 13-21 (2023); translation from Sib. Mat. Zh. 64, No. 1, 17-27 (2023).
Let \(\mathcal{M}\) be a von Neumann algebra of operators acting on a Hilbert space \(\mathcal{H}\) equipped with a faithful normal semifinite trace \(\tau\). It has become almost classical to define notions like the \(*\)-algebra \(S(\mathcal{M},\tau)\) of \(\tau\)-measurable operators on \(\mathcal{H}\), its ideals \(S_0(\mathcal{M},\tau)\) (respectively \(\mathcal{F}(\mathcal{M},\tau)\)) of \(\tau\)-compact (respectively elementary) operators. For \(0<p<\infty\), counterparts of the classical Lebesgue spaces \(L^p(\mathcal{M},\tau)\) are defined in a natural way with an F-norm \(\|\cdot\|_p\) (which is a norm if \(p\ge1\)). In the case \(\mathcal{M}=\mathcal{B}(\mathcal{H})\) (the bounded operators on \(\mathcal{H}\)), we have that \(S(\mathcal{M},\tau)=\mathcal{M}\), \(S_0(\mathcal{M},\tau)=\) the compact operators on \(\mathcal{H}\), \(\mathcal{F}(\mathcal{M},\tau)=\) the finite rank operators on \(\mathcal{H}\). Most results below are new even in this special case.
The author continues the study of the topology \(t_\tau\) (respectively \(t_{\tau l}\), \(t_{w\tau l}\)) of convergence (respectively local, weak local convergence) in measure. Zero neighborhoods of \(t_{\tau l}\) are of the form \[\mathcal{V}(\varepsilon,\delta,P)=\{X\in S(\mathcal{M},\tau) : \exists Q\in\mathcal{M}\text{ a projection s.t. } Q\le P,\ \|XQ\|\le\varepsilon, \ \tau(P-Q)\le\delta\}\] where \(P\) is a projection of \(\mathcal{M}\), \(\varepsilon>0\), \(\delta >0\). If \(P\) is replaced by the unit \(I\) of \(\mathcal{M}\) (respectively if \(\|XQ\|\) is replaced by \(\|QXQ\|\)), then one obtains the zero neighborhoods of \(t_\tau\) (respectively \(t_{w\tau l}\)). The three versions coincide if \(\tau(I)<\infty\). Sometimes the local versions are more appropriate than \(t_\tau\). For example, in the classical space \(L^1(\mu)\) with a \(\sigma\)-finite \(\mu\), a sequence in \(L^1(\mu)\) converges in norm if and only if it converges in the weak and in the local measure topology.
A \(*\)-linear subspace \(\mathcal{X}\subset S(\mathcal{M},\tau)\) with an F-norm \(\|\cdot\|_\mathcal{X}\) is called an F-normed space (F-NIP) on \((\mathcal{M},\tau)\) if the involution on it is isometric for \(\|\cdot\|_\mathcal{X}\) and if, given \(A\in\mathcal{X}\), \(B\in S(\mathcal{M},\tau)\), the inequality \(|B|\le|A|\) implies that \(B\in\mathcal{X}\) and \(\|B\|_\mathcal{X}\le\|A\|_\mathcal{X}\). The inclusion of such an \(\mathcal{X}\) in \(S(\mathcal{M},\tau)\) is known to be \(t_{w\tau l}\)-continuous.
We list some results of the paper.
1.
There is a sufficient condition for a selfadjoint \(Y\in S(\mathcal{M},\tau)\) to be positive: if \(X\in S(\mathcal{M},\tau)\) is such that \(X^n\to0\) in \(t_{\tau l}\) and \(X^*YX\le Y\), then \(Y\ge0\).
2.
The \(*\)-ideal \(\mathcal{F}(\mathcal{M},\tau)\) (and a fortiori \(L^p(\mathcal{M},\tau)\)) is \(t_{\tau l}\)-dense in \(S(\mathcal{M},\tau)\).
3.
If \(t_\tau\) is locally convex (on \(S(\mathcal{M},\tau)\)), then so is \(t_{\tau l}\); if \(t_{\tau l}\) is locally convex, then so is \(t_{w\tau l}\).
4.
Given an invertible selfadjoint element \(A\) in the commutator of \(S(\mathcal{M},\tau)\), the author associates to an F-NIP \(\mathcal{X}\) another F-NIP, a kind of weighted F-NIP, \(\mathcal{X}(A)\), which inherits properties from \(\mathcal{X}\) (if \(\mathcal{X}\) has them) like local convexity, completeness and others.
5.
If \(\mathcal{X}\subset\mathcal{Y}\) are two F-NIPs (on \(S(\mathcal{M},\tau)\)), then the inclusion of \(\mathcal{X}\) into \(\mathcal{Y}\) is \(t_{w\tau l}\)-continuous.
6.
The intersection \(\mathcal{X}=\bigcap\mathcal{X}_n\) of a sequence \((\mathcal{X}_n)\) of F-NIPs on \(S(\mathcal{M},\tau)\) becomes naturally an F-NIP. Some results on such an intersection are obtained. For example, if \(\mathcal{Y}\) is a locally bounded F-NIP, then \(\mathcal{X}\subset\mathcal{Y}\) if and only if \(\mathcal{X}\subset\mathcal{Y}_n\) for some \(n\in\mathbb{N}\).

MSC:

46L51 Noncommutative measure and integration
46H10 Ideals and subalgebras
47L20 Operator ideals
47B02 Operators on Hilbert spaces (general)
Full Text: DOI

References:

[1] Ciach, L., Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra, Colloq. Math., 55, 1, 109-121 (1988) · Zbl 0662.46067 · doi:10.4064/cm-55-1-109-121
[2] Dodds, P.; Dodds, TY; Pagter de, B., Noncommutative Köthe duality, Trans. Amer. Math. Soc., 339, 2, 717-750 (1993) · Zbl 0801.46074
[3] Skvortsova G. Sh.; Tikhonov, O., Convex sets in noncommutative \(L^1 \)-spaces that are closed in the topology of local convergence in measure, Russian Math. (Iz. VUZ), 42, 8, 46-52 (1998) · Zbl 1115.46306
[4] Skvortsova G. Sh., On the weak sequential completeness of quotient spaces of the space of integrable operators, Russian Math. (Iz. VUZ), 46, 9, 68-71 (2002) · Zbl 1175.46056
[5] Bikchentaev, A., The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra, Lobachevskii J. Math., 14, 17-24 (2004) · Zbl 1077.46055
[6] Dodds, P.; Dodds, TY; Sukochev, F.; Tikhonov O. Ye., A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure, Positivity, 9, 3, 457-484 (2005) · Zbl 1123.46044 · doi:10.1007/s11117-005-1384-0
[7] Bikchentaev, A., Local convergence in measure on semifinite von Neumann algebras, Proc. Steklov Inst. Math., 255, 35-48 (2006) · Zbl 1351.46057 · doi:10.1134/S0081543806040043
[8] Bikchentaev, A., Local convergence in measure on semifinite von Neumann algebras. II, Math. Notes, 82, 5, 703-707 (2007) · Zbl 1152.46313 · doi:10.1134/S0001434607110120
[9] Bikchentaev, A.; Sukochev, F., When weak and local measure convergence implies norm convergence, J. Math. Anal. Appl., 473, 2, 1414-1431 (2019) · Zbl 1423.46086 · doi:10.1016/j.jmaa.2019.01.028
[10] Bikchentaev, A., Convergence in measure and \(\tau \)-compactness of \(\tau \)-measurable operators, affiliated with a semifinite von Neumann algebra, Russian Math. (Iz. VUZ), 64, 5, 79-82 (2020) · Zbl 1464.46067 · doi:10.3103/S1066369X20050096
[11] Cordero, E.; de Gosson, M.; Nicola, F., On the positivity of trace class operators, Adv. Theor. Math. Phys., 23, 8, 2061-2091 (2020) · Zbl 07432489 · doi:10.4310/ATMP.2019.v23.n8.a4
[12] Moslehian, M.; Kian, M.; Xu, Q., Positivity of \(2\times 2\) block matrices of operators, Banach J. Math. Anal., 13, 3, 726-743 (2019) · Zbl 1476.47006 · doi:10.1215/17358787-2019-0019
[13] Bikchentaev, A., Invertibility of the operators on Hilbert spaces and ideals in \(C^* \)-algebras, Math. Notes, 112, 3, 360-368 (2022) · Zbl 07606781 · doi:10.1134/S0001434622090036
[14] Akemann, C.; Anderson, J.; Pedersen, G., Triangle inequalities in operator algebras, Linear Multilinear Algebra, 11, 2, 167-178 (1982) · Zbl 0485.46029 · doi:10.1080/03081088208817440
[15] Ber, A.; Levitina, G.; Chilin, V., Derivations with values in quasi-normed bimodules of locally measurable operators, Siberian Adv. Math., 25, 3, 169-178 (2015) · Zbl 1340.47073 · doi:10.3103/S1055134415030025
[16] Takesaki, M., Theory of Operator Algebras. I (2002), Berlin: Springer, Berlin · Zbl 0990.46034
[17] Takesaki, M., Theory of Operator Algebras. II (2003), Berlin: Springer, Berlin · Zbl 1059.46031 · doi:10.1007/978-3-662-10453-8
[18] Fack, T.; Kosaki, H., Generalized \(s \)-numbers of \(\tau \)-measurable operators, Pacific J. Math., 123, 2, 269-300 (1986) · Zbl 0617.46063 · doi:10.2140/pjm.1986.123.269
[19] Stroh, A.; West, G., \( \tau \)-Compact operators affiliated to a semifinite von Neumann algebra, Proc. Roy. Irish Acad. Sect. A, 93, 1, 73-86 (1993) · Zbl 0790.46049
[20] Edwards, R., Functional Analysis. Theory and Applications (1965), New York, Chicago, San Francisco, Toronto, and London: Holt Rinehart and Winston, New York, Chicago, San Francisco, Toronto, and London · Zbl 0182.16101
[21] Conradie J. and Crowther Ch., “The algebra of \(\tau \)-measurable operators,” in: Operator algebras, Operator Theory and Applications, Birkhäuser, Basel (2010), 103-119 (Oper. Theory Adv. Appl.; vol. 195). · Zbl 1204.46033
[22] Bikchentaev, A., Minimality of convergence in measure topologies on finite von Neumann algebras, Math. Notes, 75, 3, 315-321 (2004) · Zbl 1063.46049 · doi:10.1023/B:MATN.0000023310.15215.c6
[23] Bikchentaev, A., Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra, Sib. Math. J., 59, 2, 243-251 (2018) · Zbl 06908372 · doi:10.1134/S0037446618020064
[24] Bikchentaev, A., Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra, Ufa Math. J., 11, 3, 3-10 (2019) · Zbl 1463.46091 · doi:10.13108/2019-11-3-3
[25] Yeadon, F., Convergence of measurable operators, Proc. Cambridge Phil. Soc., 74, 2, 257-268 (1973) · Zbl 0272.46043 · doi:10.1017/S0305004100048052
[26] Tembo I.D., “Invertibility in the algebra of \(\tau \)-measurable operators,” in: Operator Algebras, Operator Theory and Applications, Birkhäuser, Basel (2010), 245-256 (Oper. Theory Adv. Appl.; vol. 195). · Zbl 1192.47073
[27] Bikchentaev, A., Essentially invertible measurable operators affiliated to a semifinite von Neumann algebra and commutators, Sib. Math. J., 63, 2, 224-232 (2022) · Zbl 1496.46062 · doi:10.1134/S0037446622020033
[28] Rolewicz, S., Metric Linear Spaces (1984), Warsaw and Dordrecht: PWN-Polish Sci. and Reidel, Warsaw and Dordrecht · Zbl 0526.49018
[29] Rudin, W., Functional Analysis (1991), New York: McGraw-Hill, New York · Zbl 0867.46001
[30] Bourbaki, N., General Topology. Fundamental Structures (1968), Moscow: Nauka, Moscow
[31] Banach, S., Theory of Linear Operators (1987), Amsterdam etc.: North-Holland, Amsterdam etc. · Zbl 0613.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.