×

Random matrix models for datasets with fixed time horizons. (English) Zbl 1466.91302

Summary: This paper examines the use of random matrix theory as it has been applied to model large financial datasets, especially for the purpose of estimating the bias inherent in mean-variance portfolio allocation when a sample covariance matrix is substituted for the true underlying covariance. Such problems were observed and modeled in the seminal work of L. Laloux et al. [“Noise dressing of financial correlation matrices”, Phys. Rev. Lett. 83, No. 7, 1467–1470 (1999; doi:10.1103/physrevlett.83.1467)] and rigorously proved by Z. Bai et al. [Math. Finance 19, No. 4, 639–667 (2009; Zbl 1185.91155)] under minimal assumptions. If the returns on assets to be held in the portfolio are assumed independent and stationary, then these results are universal in that they do not depend on the precise distribution of returns. This universality has been somewhat misrepresented in the literature, however, as asymptotic results require that an arbitrarily long time horizon be available before such predictions necessarily become accurate. In order to reconcile these models with the highly non-Gaussian returns observed in real financial data, a new ensemble of random rectangular matrices is introduced, modeled on the observations of independent Lévy processes over a fixed time horizon.

MSC:

91G10 Portfolio theory
60G51 Processes with independent increments; Lévy processes

Citations:

Zbl 1185.91155
Full Text: DOI

References:

[1] Aoyama, T., Maejima, M. and Rosiński, J., A subclass of type \(G\) selfdecomposable distributions on ##img## ##img####img##\( \mathbb{R}^d\). J. Theoret. Probab., 2008, 21, 14-34. doi: 10.1007/s10959-007-0129-3 · Zbl 1146.60013 · doi:10.1007/s10959-007-0129-3
[2] Bai, Z. and Silverstein, J.W., Spectral Analysis of Large Dimensional Random Matrices, 2nd ed., Springer Series in Statistics, 2010 (Springer: New York). · Zbl 1301.60002
[3] Bai, Z. and Zhou, W., Large sample covariance matrices without independence structures in columns. Statist. Sinica, 2008, 18, 425-442. · Zbl 1135.62009
[4] Bai, Z., Liu, H. and Wong, W.K., Enhancement of the applicability of Markowitz’s portfolio optimization by utilizing random matrix theory. Math. Finance, 2009, 19, 639-667. doi: 10.1111/j.1467-9965.2009.00383.x · Zbl 1185.91155 · doi:10.1111/j.1467-9965.2009.00383.x
[5] Baik, J. and Silverstein, J.W., Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal., 2006, 97, 1382-1408. doi: 10.1016/j.jmva.2005.08.003 · Zbl 1220.15011 · doi:10.1016/j.jmva.2005.08.003
[6] Barndorff-Nielsen, O.E., Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Stat., 1997, 24, 1-13. doi: 10.1111/1467-9469.00045 · Zbl 0934.62109 · doi:10.1111/1467-9469.00045
[7] Belinschi, S., Dembo, A. and Guionnet, A., Spectral measure of heavy tailed band and covariance random matrices. Commun. Math. Phys., 2009, 289, 1023-1055. doi: 10.1007/s00220-009-0822-4 · Zbl 1221.15050 · doi:10.1007/s00220-009-0822-4
[8] Ben Arous, G. and Guionnet, A., The spectrum of heavy tailed random matrices. Commun. Math. Phys., 2008, 278, 715-751. doi: 10.1007/s00220-007-0389-x · Zbl 1157.60005 · doi:10.1007/s00220-007-0389-x
[9] Benaych-Georges, F. and Cabanal-Duvillard, T., Marčenko-Pastur theorem and Bercovici-Pata bijections for heavy-tailed or localized vectors. ALEA Lat. Am. J. Probab. Math. Stat., 2012, 9, 685-715. · Zbl 1280.15018
[10] Bickel, P.J. and Levina, E., Regularized estimation of large covariance matrices. Ann. Statist., 2008, 36, 199-227. doi: 10.1214/009053607000000758 · Zbl 1132.62040 · doi:10.1214/009053607000000758
[11] Biroli, G., Bouchaud, J.P. and Potters, M., On the top eigenvalue of heavy-tailed random matrices. Europhys. Lett., 2007a, 78, Art. 10001. doi: 10.1209/0295-5075/78/10001 · Zbl 1244.82029 · doi:10.1209/0295-5075/78/10001
[12] Biroli, G., Bouchaud, J.P. and Potters, M., The student ensemble of correlation matrices: eigenvalue spectrum and Kullback-Leibler entropy. Acta Phys. Polon. B, 2007b, 38, 4009-4026. · Zbl 1373.62283
[13] Bondesson, L., Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statistics Vol. 76, 1992 (Springer-Verlag: New York). · Zbl 0756.60015
[14] Bouchaud, J.P. and Potters, M., Financial applications of random matrix theory: a short review. In The Oxford Handbook of Random Matrix Theory, pp. 824-850, 2011 (Oxford University Press: Oxford). · Zbl 1235.91177
[15] Bun, J., Bouchaud, J.P. and Potters, M., Cleaning large correlation matrices: tools from random matrix theory. Phys. Rep., 2017, 666, 1-109. doi: 10.1016/j.physrep.2016.10.005 · Zbl 1359.15031 · doi:10.1016/j.physrep.2016.10.005
[16] Burda, Z. and Jurkiewicz, J., Heavy-tailed random matrices. In The Oxford Handbook of Random Matrix Theory, edited by G. Akemann, J. Baik, and P. Di Francesco, pp. 30-59, 2011 (Oxford University Press: Oxford). · Zbl 1236.15066
[17] Burda, Z.A., Jarosz, A., Nowak, M.A., Jurkiewicz, J., Papp, G. and Zahed, I., Applying free random variables to random matrix analysis of financial data. Part I: The Gaussian case. Quant. Finance, 2011, 11, 1103-1124. doi: 10.1080/14697688.2010.484025 · Zbl 1219.91150
[18] Capitaine, M. and Donati-Martin, C., Spectrum of deformed random matrices and free probability [online], 2016. Available online at: https://hal.archives-ouvertes.fr/hal-01346371 (accessed 21 December 2017). · Zbl 1417.60007
[19] Carr, P., Geman, H., Madan, D.B. and Yor, M., The fine structure of asset returns: An empirical investigation. J. Bus., 2002, 75, 305-332. doi: 10.1086/338705 · doi:10.1086/338705
[20] Couillet, R. and Debbah, M., Random Matrix Methods for Wireless Communications, 2011 (Cambridge University Press: Cambridge, MA). · Zbl 1252.94001 · doi:10.1017/CBO9780511994746
[21] El Karoui, N., On the realized risk of high-dimensional Markowitz portfolios. SIAM J. Financial Math., 2013, 4, 737-783. doi: 10.1137/090774926 · Zbl 1358.91092 · doi:10.1137/090774926
[22] Feng, L. and Lin, X., Inverting analytic characteristic functions and financial applications. SIAM J. Financial Math., 2013, 4, 372-398. doi: 10.1137/110830319 · Zbl 1282.60021 · doi:10.1137/110830319
[23] Fischer, M.J., Generalized Hyperbolic Secant Distributions: With Applications to Finance, Springer Briefs in Statistics, 2014 (Springer: Heidelberg). · Zbl 1341.62009
[24] Jeanblanc, M., Yor, M. and Chesney, M., Mathematical Methods for Financial Markets, Springer Finance, 2009 (Springer-Verlag London, Ltd.: London). · Zbl 1205.91003
[25] Jondeau, E., Poon, S.H. and Rockinger, M., Financial Modeling Under Non-Gaussian Pistributions, Springer Finance, 2007 (Springer-Verlag London, Ltd.: London). · Zbl 1138.91002
[26] Koponen, I., Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E, 1995, 52, 1197. doi: 10.1103/PhysRevE.52.1197 · doi:10.1103/PhysRevE.52.1197
[27] Laloux, L., Cizeau, P., Bouchaud, J.P. and Potters, M., Noise dressing of financial correlation matrices. Phys. Rev. Lett., 1999, 83, 1467-1470. doi: 10.1103/PhysRevLett.83.1467 · doi:10.1103/PhysRevLett.83.1467
[28] Livan, G., Alfarano, S. and Scalas, E., Fine structure of spectral properties for random correlation matrices: An application to financial markets. Phys. Rev. E, 2011, 84, 016113. doi: 10.1103/PhysRevE.84.016113 · doi:10.1103/PhysRevE.84.016113
[29] Madan, D.B. and Seneta, E., The variance gamma (VG) model for share market returns. J. Bus., 1990, 63, 511-524. doi: 10.1086/296519 · doi:10.1086/296519
[30] Maejima, M., Classes of infinitely divisible distributions and examples. In Lévy Matters V, edited by L.N. Andersen, S. Asmussen, F. Aurzada, P.W. Glynn, M. Maejima, M. Pihlsgård, and T. Simon, Vol. 2149, pp. 1-65, 2015 (Springer: Cham). · Zbl 1336.60025
[31] Mantegna, R.N. and Stanley, H.E., Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett., 1994, 73, 2946-2949. doi: 10.1103/PhysRevLett.73.2946 · Zbl 1020.82610 · doi:10.1103/PhysRevLett.73.2946
[32] Mantegna, R.N. and Stanley, H.E., Scaling behaviour in the dynamics of an economic index. Nature, 1995, 376, 46-49. doi: 10.1038/376046a0 · doi:10.1038/376046a0
[33] Marčenko, V.A. and Pastur, L.A., Distribution of eigenvalues for some sets of random matrices. Math. USSR-Sbornik, 1967, 1, 457. doi: 10.1070/SM1967v001n04ABEH001994 · Zbl 0162.22501 · doi:10.1070/SM1967v001n04ABEH001994
[34] Pascucci, A., PDE and Martingale Methods in Option Pricing, Bocconi & Springer Series Vol. 2, 2011 (Springer, Bocconi University Press: Milan). · Zbl 1214.91002
[35] Paul, D. and Aue, A., Random matrix theory in statistics: a review. J. Statist. Plann. Inference, 2014, 150, 1-29. doi: 10.1016/j.jspi.2013.09.005 · Zbl 1287.62011 · doi:10.1016/j.jspi.2013.09.005
[36] Politi, M., Scalas, E., Fulger, D. and Germano, G., Spectral densities of Wishart-Lévy free stable random matrices. Eur. Phys. J. B, 2010, 73, 13-22. doi: 10.1140/epjb/e2009-00360-7 · Zbl 1188.15038 · doi:10.1140/epjb/e2009-00360-7
[37] Sato, K.I., Lévy Processes, Pnfinitely Divisible Distributions, Cambridge Studies in Advanced Mathematics, Vol. 68, 2013 (Cambridge University Press: Cambridge), Translated from the 1990 Japanese original. Revised edition of the 1999 English translation. · Zbl 1287.60003
[38] Silverstein, J.W., Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal., 1995, 55, 331-339. doi: 10.1006/jmva.1995.1083 · Zbl 0851.62015 · doi:10.1006/jmva.1995.1083
[39] Singh, A. and Xu, D., Random matrix application to correlations amongst the volatility of assets. Quant. Finance, 2016, 16, 69-83. doi: 10.1080/14697688.2015.1014400 · Zbl 1468.91154
[40] Thorin, O., On the infinite divisibility of the lognormal distribution. Scand. Actuar. J., 1977a, 1977, 121-148. doi: 10.1080/03461238.1977.10405635 · Zbl 0372.60020
[41] Thorin, O., On the infinite divisbility of the Pareto distribution. Scand. Actuar. J., 1977b, 1977, 31-40. doi: 10.1080/03461238.1977.10405623 · Zbl 0355.60016
[42] Voit, J., The Statistical Mechanics of Financial Markets, 3rd ed., Texts and Monographs in Physics, 2005 (Springer-Verlag: Berlin). · Zbl 1107.91055
[43] Yao, J., Zheng, S. and Bai, Z., Large Sample Covariance Matrices and High-dimensional Data Analysis, Cambridge Series in Statistical and Probabilistic Mathematics, Vol. 39, 2015 (Cambridge University Press: New York). · Zbl 1380.62011
[44] Yaskov, P., Necessary and sufficient conditions for the Marchenko-Pastur theorem. Electron. Commun. Probab., 2016a, 21, Paper No. 73, 1-8. doi:10.1214/16-ECP4748. · Zbl 1352.60008 · doi:10.1214/16-ECP4748
[45] Yaskov, P., A short proof of the Marchenko-Pastur theorem. C. R. Math. Acad. Sci. Paris, 2016b, 354, 319-322. doi: 10.1016/j.crma.2015.12.008 · Zbl 1380.60017 · doi:10.1016/j.crma.2015.12.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.