×

Delta shocks and vacuums to the isentropic Euler equations with the flux perturbation for van der Waals gas. (English) Zbl 1459.76127

Summary: In this paper, we study the isentropic Euler equations with the flux perturbation for van der Waals gas, in which the density has both lower and upper bounds due to the introduction of the flux approximation and the molecular excluded volume. First, we solve the Riemann problem of this system and construct the Riemann solutions. Second, the formation mechanisms of delta shocks and vacuums are analyzed for the Riemann solutions as the pressure, the flux approximation, and the molecular excluded volume all vanish. Finally, some numerical simulations are demonstrated to verify the theoretical analysis.

MSC:

76N15 Gas dynamics (general theory)
76L05 Shock waves and blast waves in fluid mechanics
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
Full Text: DOI

References:

[1] Weinan, E.; Rykov, Y. G.; Sinai, Y. G., Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Communications in Mathematical Physics, 177, 2, 349-380 (1996) · Zbl 0852.35097 · doi:10.1007/bf02101897
[2] Shandarin, S. F.; Zeldovich, Y. B., The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Reviews of Modern Physics, 61, 2, 185-220 (1989) · doi:10.1103/revmodphys.61.185
[3] Brenier, Y.; Grenier, E., Sticky particles and scalar conservation laws, SIAM Journal on Numerical Analysis, 35, 6, 2317-2328 (1998) · Zbl 0924.35080 · doi:10.1137/s0036142997317353
[4] Bouchut, F., On zero-pressure gas dynamics, advances in kinetic theory and computing, World Scientific Series on Advances in Mathematics for Applied Sciences, 22, 171-190 (1994) · Zbl 0863.76068
[5] Huang, F. M.; Wang, Z., Well posedness for pressureless flow, Communications in Mathematical Physics, 222, 1, 117-146 (2001) · Zbl 0988.35112 · doi:10.1007/s002200100506
[6] Sheng, W. C.; Zhang, T., The Riemann problem for transportation equation in gas dynamics, Memoirs of the American Mathematical Society, 137, 1-77 (1999) · Zbl 0913.35082 · doi:10.1090/memo/0654
[7] Li, J. Q., Note on the compressible Euler equations with zero temperature, Applied Mathematics Letters, 14, 4, 519-523 (2001) · Zbl 0986.76079 · doi:10.1016/s0893-9659(00)00187-7
[8] Chen, G. Q.; Liu, H. L., Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the euler equations for isentropic fluids, SIAM Journal on Mathematical Analysis, 34, 4, 925-938 (2003) · Zbl 1038.35035 · doi:10.1137/s0036141001399350
[9] Chen, G. Q.; Liu, H. L., Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D: Nonlinear Phenomena, 189, 1-2, 141-165 (2004) · Zbl 1098.76603 · doi:10.1016/j.physd.2003.09.039
[10] Yang, H. C.; Wang, J. H., Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas, Journal of Mathematical Analysis and Applications, 413, 2, 800-820 (2014) · Zbl 1308.76233 · doi:10.1016/j.jmaa.2013.12.025
[11] Wang, J. H.; Yang, H. C., Vanishing pressure and magnetic field limit of solutions to the nonisentropic magnetogasdynamics, ZAMM—Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 98, 8, 1472-1492 (2018) · Zbl 1538.35222 · doi:10.1002/zamm.201700116
[12] Yin, G.; Sheng, W. C., Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for polytropic gases, Journal of Mathematical Analysis and Applications, 355, 2, 594-605 (2009) · Zbl 1167.35047 · doi:10.1016/j.jmaa.2009.01.075
[13] Shen, C.; Sun, M. N., Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, Journal of Differential Equations, 249, 12, 3024-3051 (2010) · Zbl 1211.35193 · doi:10.1016/j.jde.2010.09.004
[14] Li, H. H.; Shao, Z. Q., Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas, Communications on Pure and Applied Analysis, 15, 6, 2373-2400 (2016) · Zbl 1354.35080 · doi:10.3934/cpaa.2016041
[15] Shao, Z. Q., The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density—pressure relation, Zeitschrift für Angewandte Mathematik und Physik, 69, 2, 44 (2018) · Zbl 1392.35218 · doi:10.1007/s00033-018-0937-6
[16] Shao, Z. Q., Riemann problem with delta initial data for the isentropic relativistic Chaplygin Euler equations, Zeitschrift für Angewandte Mathematik und Physik, 67, 3, 66 (2016) · Zbl 1355.35139 · doi:10.1007/s00033-016-0663-x
[17] Mitrovic, D.; Nedeljkov, M., Delta shock waves as a limit of shock waves, Journal of Hyperbolic Differential Equations, 4, 4, 629-653 (2007) · Zbl 1145.35086 · doi:10.1142/s021989160700129x
[18] Danilov, V. G.; Mitrovic, D., Delta shock wave formation in the case of triangular hyperbolic system of conservation laws, Journal of Differential Equations, 245, 12, 3704-3734 (2008) · Zbl 1192.35120 · doi:10.1016/j.jde.2008.03.006
[19] Yang, H. C.; Liu, J. J., Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation, Science China Mathematics, 58, 11, 2329-2346 (2015) · Zbl 1331.35234 · doi:10.1007/s11425-015-5034-0
[20] Wang, J. H.; Pang, Y. C.; Zhang, Y., Limits of solutions to the isentropic Euler equations for van der Waals gas, International Journal of Nonlinear Sciences and Numerical Simulation, 20, 3-4, 461-473 (2019) · Zbl 1476.35140 · doi:10.1515/ijnsns-2018-0263
[21] Pandey, M.; Sharma, V. D., Interaction of a characteristic shock with a weak discontinuity in a non-ideal gas, Wave Motion, 44, 5, 346-354 (2007) · Zbl 1231.76132 · doi:10.1016/j.wavemoti.2006.12.002
[22] Hattori, H., The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion—isothermal case, Archive for Rational Mechanics and Analysis, 92, 3, 247-263 (1986) · Zbl 0673.76084 · doi:10.1007/bf00254828
[23] Lécureux-Mercier, M., Global smooth solutions of Euler equations for van der Waals gases, SIAM Journal on Mathematical Analysis, 43, 2, 877-903 (2011) · Zbl 1230.35063 · doi:10.1137/100787982
[24] Zafar, M.; Sharma, V. D., Classification of the Riemann problem for compressible two-dimensional Euler system in non-ideal gas, Nonlinear Analysis: Real World Applications, 43, 245-261 (2018) · Zbl 1394.35342 · doi:10.1016/j.nonrwa.2018.02.011
[25] Lai, G., Interactions of composite waves of the two-dimensional full Euler equations for van der Waals gases, SIAM Journal on Mathematical Analysis, 50, 4, 3535-3597 (2018) · Zbl 1394.35276 · doi:10.1137/17m1144660
[26] Shu, C., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Lecture Notes in Mathematics, 325-432 (1997), Berlin, Germany: Springer, Berlin, Germany, ICASE Report No NASA/CR-97-206253 · Zbl 0927.65111 · doi:10.1007/bfb0096355
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.