×

A note on fractional powers of strongly positive operators and their applications. (English) Zbl 07115434

Summary: The present paper deals with fractional powers of positive operators in a Banach space. The main theorem concerns the structure of fractional powers of positive operators in fractional spaces. As applications, the structure of fractional powers of elliptic operators is studied.

MSC:

47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
47F05 General theory of partial differential operators
46B70 Interpolation between normed linear spaces
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure and Appl. Math. 15, No 2 (1962), 119-147. · Zbl 0109.32701
[2] M. Ashyraliyev, On Gronwall’s type integral inequalities with singular kernels. Filomat31, No 4 (2017), 1041-1049. · Zbl 1488.26082
[3] A. Ashyralyev, A note on fractional derivatives and fractional powers of operators. J. Math. Anal. Appl. 357, No 1 (2009), 232-236. · Zbl 1175.26004
[4] A. Ashyralyev, A survey of results in the theory of fractional spaces generated by positive operators. TWMS JPAM6, No 2 (2015), 129-157. · Zbl 1369.47049
[5] A. Ashyralyev, S. Akturk, Positivity of one-dimensional operator 2mth order on the half-line and its applications. Numer. Funct. Anal. and Optimization38, No 10 (2017), 1360-1373. · Zbl 1488.34211
[6] A. Ashyralyev, N. Emirov, Z. Cakir, Well-posedness of fractional parabolic differential and difference equations with Dirichlet-Neumann conditions. Electr. J. of Differential Equations2014, No 97 (2014), 1-17. · Zbl 1286.35247
[7] A. Ashyralyev, A. Hamad, Fractional powers of strongly positive operators and their applications. AIP Conference Proc. 1880 (2017), No 050001; . · Zbl 1492.47040 · doi:10.1063/1.500063
[8] A. Ashyralyev, B. Hicdurmaz, A stable second order of accuracy difference scheme for a fractional Schrodinger differential equation. Appl. and Comput. Math. 17, No 1 (2018), 10-21. · Zbl 1452.65147
[9] A. Ashyralyev, N. Nalbant, Y. Sozen, Structure of fractional spaces generated by second order difference operators. J. of the Franklin Institute351, No 2 (2014), 713-731. · Zbl 1293.47035
[10] A. Ashyralyev, P.E. Sobolevskii, Well-Posedness of Parabolic Difference Equations. Birkhauser Verlag, 69 Basel-Boston-Berlin (1994). · Zbl 0803.65089
[11] A. Ashyralyev, F.S. Tetikog˘lu, Structure of fractional spaces generated by the difference operator and its applications. Numer. Funct. Anal. and Optimization38, No 10 (2017), 1325-1341. · Zbl 1390.39061
[12] L. Avazpour, Fractional Ostrowski type inequalities for functions whose derivatives are prequasiinvex. J. of Inequal. and Spec. Funct. 9, No 2 (2018), 15-29.
[13] F. Bozkurt, T. Abdeljawad, M. A. Hajji, Stability analysis of a fractional order differential equatin model of a brain tumor growth depending on the density. Appl. and Comput. Math. 14, No 1 (2015), 50-62. · Zbl 1344.34056
[14] C. Chen, M. Kostić, M. Li, Representation of complex powers of C-sectorial operators. Fract. Calc. Appl. Anal. 17, No 3 (2014), 827-854; ; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml. · Zbl 1318.47056 · doi:10.2478/s13540-014-0200-6
[15] S.I. Danelich, Fractional Powers of Positive Difference Operators. PhD Thesis, Voronezh State University, Voronezh, 1989 (In Russian).
[16] I. Dimovski, Operational calculus for a class of differential operators. Compt. Rendus de l’Acad. Bulgare Sci. 19, No 12 (1966), 1111-1114.
[17] I.D. Evzerov, P.E. Sobolevskii, Fractional powers of ordinary differential operators. Differ. Uravn. 9, No 2 (1973), 228-240. · Zbl 0316.34014
[18] I.D. Evzerov, P.E. Sobolevskii, The resolvent and fractional powers of ordinary differential operators in spaces of smooth functions. Differ. Uravn. 12, No 2 (1976), 227-233. · Zbl 0333.47020
[19] R. Garra, A. Giusti, F. Mainardi, et al. Fractional relaxation with time-varying coefficient. Fract. Calc. Appl. Anal. 17, No 2 (2014), 424-439; ; https://www.degruyter.com/view/j/fca.2014.17.issue-2/issue-files/fca.2014.17.issue-2.xml. · Zbl 1305.26018 · doi:10.2478/s13540-014-0178-0
[20] I.N. Gurova, P.E. Sobolevskii, L-characteristics of fractional powers of difference operators. Math. Notes of Acad. of Sci. of USSR25, No 1 (1979), 123-137. · Zbl 0402.47014
[21] V. Kiryakova, From the hyper-Bessel operators of Dimovski to the generalized fractional calculus. Fract. Calc. Appl. Anal. 17, No 4 (2014), 977-1000; ; https://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml. · Zbl 1314.44003 · doi:10.2478/s13540-014-0210-4
[22] M.A. Krasnosel’skii, P.E. Sobolevskii, Fractional powers of operators which operater in Banach spaces. Dokl. Akad. Nauk SSSR129, No 3 (1959), 499-502. · Zbl 0090.09102
[23] M.A. Krasnosel’skii, P.P. Zabreiko, E.I. Pustyl’nik, P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions. Noordhoff, Leiden, 1976. · Zbl 0312.47041
[24] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, No 1 (2017), 7-51; ; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml. · Zbl 1375.47038 · doi:10.1515/fca-2017-0002
[25] W. Lamb, Fractional powers of operators defined on a Fréchet space. Proc. Edinburgh Math. Soc. 27 (1984), 165-180. · Zbl 0527.47002
[26] A.C. McBride, Fractional powers of operators of a class of ordinary differential operators. Proc. London Math. Soc. (III)45 (1982), 519-546. · Zbl 0462.44006
[27] A.C. McBride, Semigroups of Linear Operators : An Introduction. Ser. Pitman Research Notes in Math. Series, # 156, Longman Scientific&Technical, 1987. · Zbl 0635.47035
[28] Z.D. Mei, J.K. Peng, Y. Zhang, A characteristic of fractional resolvents. Fract. Calc. Appl. Anal. 16, No 4 (2013), 777-790; ; https://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml. · Zbl 1314.34022 · doi:10.2478/s13540-013-0048-1
[29] V. Shakhmurov, H. Musaev, Maximal regular convolution differential equations in weighted Besov spaces. Appl. and Comput. Math. 16, No 2 (2017), 190-200. · Zbl 1474.34401
[30] Yu.A. Simirnitskii, Positivity of Difference Elliptic Operators. PhD Thesis, Voronezh State University, Voronezh, 1983 (In Russian).
[31] Yu.A. Simirnitskii, P.E. Sobolevskii, Embedding theorems for fractional norms generated by an elliptic operator. Math. Notes of the Acad. of Sci. of the USSR15, No 1 (1974), 50-55. · Zbl 0309.47034
[32] P.E. Sobolevskii, A new method of summation of Fourier series converging in C-norm. Semigroup Forum71, No 2 (2005), 289-300. · Zbl 1096.47045
[33] P.E. Sobolevskii, Comparison theorems for fractional powers of operators. Soviet Math. Dokl. 8, No 3 (1967), 25-28.
[34] P.E. Sobolevskii, Dependence of fractional powers of elliptic operators on boundary conditions. Atti della Accad. Nazionale dei Lincei. Classe di Scienze Fisiche, Mat. e Naturali. Rendiconti Lincei. Mat. e Applicazioni3, No 2 (1992), 75-78. · Zbl 0794.35041
[35] P.E. Sobolevskii, Fractional powers of weakly positive operators. Dokl. Akad. Nauk SSSR166, No 6 (1966), 1296-1299. · Zbl 0184.35701
[36] P.E. Sobolevskii, Interpolation theorems for fractional powers of operators which operate in Banach spaces. In: Collection of Papers on Computational Mathematics and Theoretical Cybernetics, Voronezh State University Press, Voronezh13 (1974) 51-64 (In Russian).
[37] P.E. Sobolevskii, On fractional norms in Banach space generated by the unbounded operator. Uspekhi Mat. Nauk19, No 6 (120) (1964), 219-222.
[38] V.E. Tarasov, Fractional derivative as fractional power of derivative. International J. of Mathematics18, Issue 3 (2007), 281-299. · Zbl 1119.26011
[39] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam-New York, 1978. · Zbl 0387.46033
[40] E. Ozbilge, A. Demir, Identification of unknown coefficient in time fractional parabolic equation with mixed boundary conditions via semigroup approach. Dynamic Systems and Appl. 24, No 3 (2015), 341-348. · Zbl 1336.35369
[41] B. Wu, J. Yu, Uniqueness of an inverse problem for an integro-differential equation related to the Basset problem. Boundary Value Problems2014 (2014), Art. # 229, 9 pp. · Zbl 1432.35261
[42] K. Yosida, Functional Analysis. Springer-Verlag, Berlin, 1965. · Zbl 0152.32102
[43] X. Zhou, C. Xu, Numerical solution of the coupled system of nonlinear fractional ordinary differential equations. Advances in Appl. Math. and Mech. 9, No 3 (2017), 574-595. · Zbl 1488.35591
[44] V.G. Zvyagin, V.P. Orlov, On solvability of an initial-boundary value problem for a viscoelasticity model with fractional derivatives. Siberian Math. J. 59, Issue 6 (2018), 1073-1089. · Zbl 1409.76020
[45] V.G. Zvyagin, V.P. Orlov, On the weak solvability of a fractional viscoelasticity model. Doklady Mathematics98, Issue 3 (2018), 568-570. · Zbl 1507.35076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.