×

A multistage space-time equalizer for blind source separation. (English) Zbl 1346.94039

Summary: A multistage space-time equalizer (STE) is proposed to blindly separate signals received by an antenna array from different sources simultaneously. Neither the direction of arrival (DOA) nor a training sequence is assumed to be available at the receiver. The only assumption is that the transmitted signals satisfy the constant modulus property, which is valid for many modulation schemes, and can be exploited by the multi-modulus algorithm. Each stage consists of an adaptive beamformer, a DOA estimator and an equalizer. Its function is to jointly combat multi-user interference and the effect of fading channels between sources and the antenna. An adaptive version of the basic structure of generalized sidelobe canceller (GSC), called adaptive GSC, is presented which can track a user and strongly attenuate other users with different DOAs. The possibly time-varying DOA for each user is estimated using the phase shift between the outputs of two subarray beamformers at each stage. The estimated DOAs are used to improve multi-user interference rejection and to compute the input to the next stage. In order to significantly alleviate inter-stage error propagation and provide a fast convergence, a mean-square-error sorting algorithm is proposed which assigns detected sources to different stages according to the reconstruction error. Further, to speed up the convergence, a simple, yet efficient, DOA estimation algorithm is proposed which can provide good initial DOAs for the multistage STE. Simulation results illustrate the performance of the proposed STE and show that it can deal effectively with changing DOAs and time-varying channels.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] A. Antoniou, W.S. Lu, Practical Optimization: Algorithms and Engineering Applications (Springer, Berlin, 2010) · Zbl 1128.90001
[2] Y. Chen, T. Le-Ngoc, B. Champagne, C. Xu, Recursive least squares constant modulus algorithm for blind adaptive array. IEEE Trans. Signal Process. 52(5), 1452-1456 (2004) · Zbl 1370.94090 · doi:10.1109/TSP.2004.826167
[3] A.B. Gershman, P. Stoica, MODE with extra-roots (MODEX): a new DOA estimation algorithm with an improved threshold performance, in IEEE International Conference on Acoustics, Speech, and Signal Processing, Proceedings, vol. 5 (1999), pp. 2833-2836 · Zbl 1370.94090
[4] D. Godard, Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 28(11), 1867-1875 (1980) · doi:10.1109/TCOM.1980.1094608
[5] K. Hayashi, S. Hara, A new spatio-temporal equalization method based on estimated channel response. IEEE Trans. Veh. Technol. 50(5), 1250-1259 (2001) · doi:10.1109/25.950326
[6] J. Labat, O. Macchi, C. Laot, Adaptive decision feedback equalization: can you skip the training period? IEEE Trans. Commun. 46(7), 921-930 (1998) · doi:10.1109/26.701319
[7] Y. Lee, W.-R. Wu, Equalization with generalized sidelobe cancellation. IEEE Trans. Veh. Technol. 57(5), 2894-2906 (2008) · doi:10.1109/TVT.2007.914472
[8] M.-L. Leou, C.-C. Yeh, H.-J. Li, A novel hybrid of adaptive array and equalizer for mobile communications. IEEE Trans. Veh. Technol. 49(1), 1-10 (2000) · doi:10.1109/25.820692
[9] J.-W. Liang, J.-T. Chen, A.J. Paulraj, A two-stage hybrid approach for CCI/ISI reduction with space-time processing. Commun. Lett. IEEE 1(6), 163-165 (1997) · doi:10.1109/4234.649927
[10] A. Mathur, A.V. Keerthi, J.J. Shyok, A variable step-size CM array algorithm for fast fading channels. IEEE Trans. Signal Process. 45(4), 1083-1087 (1997) · doi:10.1109/78.564199
[11] I. Moazzen, P. Agathoklis, An approach for joint blind space-time equalization and DOA estimation, in IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2183-2186, 19-23 May 2013 · Zbl 0701.93090
[12] J. Palicot, A. Goupil, Performance analysis of the weighted decision feedback equalizer. Signal Process. 88(2), 284-295 (2008) · Zbl 1186.94268 · doi:10.1016/j.sigpro.2007.07.021
[13] A.J. Paulraj, B.C. Ng, Space-time modems for wireless personal communications. IEEE Pers. Commun. 5(1), 36-48 (1998) · doi:10.1109/98.656159
[14] J. Prokis, M. Salehi, Digital Communications, 5th edn. (McGrew-Hill, New York, 2008)
[15] R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984-995 (1989) · Zbl 0701.93090 · doi:10.1109/29.32276
[16] T.K. Sarkar, O. Pereira, Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. Antennas Propag. Mag. IEEE 37(1), 48-55 (1995) · doi:10.1109/74.370583
[17] R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276-280 (1986) · doi:10.1109/TAP.1986.1143830
[18] J.J. Shynk, R.P. Gooch, The constant modulus array for cochannel signal copy and direction finding. IEEE Trans. Signal Process. 44(3), 652-660 (1996) · doi:10.1109/78.489038
[19] J.J. Shynk, A.V. Keerthi, A. Mathur, Steady-state analysis of the multistage constant modulus array. IEEE Trans. Signal Process. 44(4), 948-962 (1996) · doi:10.1109/78.492547
[20] P. Stoica, K. Sharman, Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 38(7), 1132-1143 (1990) · Zbl 0718.93029 · doi:10.1109/29.57542
[21] L. Tao, H.K. Kwan, A novel approach to fast DOA estimation of multiple spatial narrowband signals, in The 45th Midwest Symposium on Circuits and Systems, MWSCAS-2002, vol. 1, pp. I.431-I.434, 4-7 Aug 2002
[22] H.L. Van Trees, Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part IV) (Wiley, London, 2002)
[23] V. Venkataraman, J.J. Shynk, A multistage hybrid constant modulus array with constrained adaptation for correlated sources. IEEE Trans. Signal Process. 55(6), 2509-2519 (2007) · Zbl 1391.94427 · doi:10.1109/TSP.2006.890871
[24] N. Wang, P. Agathoklis, A. Antoniou, A new DOA estimation technique based on subarray beamforming. IEEE Trans. Signal Process. 54(9), 3279-3290 (2006) · Zbl 1373.94728 · doi:10.1109/TSP.2006.877653
[25] Y. Xiang, N. Gu, K.L. Wong, Adaptive blind source separation using constant modulus criterion and signal mutual information, in IEEE International Conference on Industrial Technology, pp. 1371-1375, 14-17 Dec 2005 · Zbl 1391.94427
[26] J. Yang, J.-J. Werner, G.A. Dumont, The multimodulus blind equalization and its generalized algorithms. IEEE J. Sel. Areas Commun. 20(5), 997-1015 (2002) · doi:10.1109/JSAC.2002.1007381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.