×

Slightly broken higher-spin current in bosonic and fermionic QED in the large-\(N\) limit. (English) Zbl 07905007

Summary: We study the slightly broken higher-spin currents in various CFTs with U(1) gauge field, including the tricritical QED, scalar QED, fermionic QED and QED-Gross-Neveu-Yukawa theory. We calculate their anomalous dimension by making use of the classical non-conservation equation and the equations of motion. We find a logarithmic asymptotic behaviour (\(\gamma_s \sim 16/(N\pi^2)\log s\)) of the anomalous dimension at large spin \(s\), which is different from other interacting CFTs without gauge fields and may indicate certain unique features of gauge theories. We also study slightly broken higher-spin currents of the \(\mathrm{SU}(N)_1\) WZW model at \(d = 2 + \epsilon\) dimensions by formulating them as the QED theory, and we again find its anomalous dimension has a logarithmic asymptotic behaviour with respect to spin. This result resolves the mystery regarding the mechanism of breaking higher spin currents of Virasoro symmetry at \(d = 2+\epsilon\) dimensions, and may be applicable to other interesting problems such as the \(2 + \epsilon\) expansion of Ising CFT.

MSC:

81Txx Quantum field theory; related classical field theories
83Cxx General relativity
81Rxx Groups and algebras in quantum theory

References:

[1] I. Affleck and J. B. Marston, Large-N limit of the Heisenberg-Hubbard model: Implications for high-T c superconductors, Phys. Rev. B 37, 3774 (1988), doi:10.1103/PhysRevB.37.3774. · doi:10.1103/PhysRevB.37.3774
[2] M. Hermele, T. Senthil and M. P. A. Fisher, Algebraic spin liquid as the mother of many competing orders, Phys. Rev. B 72, 104404 (2005), doi:10.1103/PhysRevB.72.104404. · doi:10.1103/PhysRevB.72.104404
[3] M. Hermele, Y. Ran, P. A. Lee and X.-G. Wen, Properties of an algebraic spin liquid on the kagome lattice, Phys. Rev. B 77, 224413 (2008), doi:10.1103/PhysRevB.77.224413. · doi:10.1103/PhysRevB.77.224413
[4] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M. P. A. Fisher, Deconfined quantum critical points, Science 303, 1490 (2004), doi:10.1126/science.1091806. · doi:10.1126/science.1091806
[5] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath and M. P. A. Fisher, Quantum criti-cality beyond the Landau-Ginzburg-Wilson paradigm, Phys. Rev. B 70, 144407 (2004), doi:10.1103/PhysRevB.70.144407. · doi:10.1103/PhysRevB.70.144407
[6] J. K. Jain, S. A. Kivelson and N. Trivedi, Scaling theory of the fractional quantum Hall effect, Phys. Rev. Lett. 64, 1993 (1990), doi:10.1103/PhysRevLett.64.1993. · doi:10.1103/PhysRevLett.64.1993
[7] W. Chen, M. P. A. Fisher and Y.-S. Wu, Mott transition in an anyon gas, Phys. Rev. B 48, 13749 (1993), doi:10.1103/PhysRevB.48.13749. · doi:10.1103/PhysRevB.48.13749
[8] S. Kivelson, D.-H. Lee and S.-C. Zhang, Global phase diagram in the quantum Hall effect, Phys. Rev. B 46, 2223 (1992), doi:10.1103/PhysRevB.46.2223. · doi:10.1103/PhysRevB.46.2223
[9] J. Y. Lee, C. Wang, M. P. Zaletel, A. Vishwanath and Y.-C. He, Emergent multi-flavor QED 3 at the plateau transition between fractional Chern insulators: Applications to graphene heterostructures, Phys. Rev. X 8, 031015 (2018), doi:10.1103/PhysRevX.8.031015. · doi:10.1103/PhysRevX.8.031015
[10] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: Theory, nu-merical techniques, and applications, Rev. Mod. Phys. 91, 015002 (2019), doi:10.1103/RevModPhys.91.015002. · doi:10.1103/RevModPhys.91.015002
[11] A. B. Zamolodchikov and A. B. Zamolodchikov, Relativistic factorized S-matrix in two dimensions having O(N ) isotopic symmetry, Nucl. Phys. B 133, 525 (1978), doi:10.1016/0550-3213(78)90239-0. · doi:10.1016/0550-3213(78)90239-0
[12] A. B. Zamolodchikov and A. B. Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Ann. Phys. 120, 253 (1979), doi:10.1016/0003-4916(79)90391-9. · doi:10.1016/0003-4916(79)90391-9
[13] S. Parke, Absence of particle production and factorization of the S-matrix in 1 + 1 dimen-sional models, Nucl. Phys. B 174, 166 (1980), doi:10.1016/0550-3213(80)90196-0. · doi:10.1016/0550-3213(80)90196-0
[14] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A: Math. Theor. 46, 214011 (2013), doi:10.1088/1751-8113/46/21/214011. · Zbl 1339.81089 · doi:10.1088/1751-8113/46/21/214011
[15] A. L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, J. High Energy Phys. 12, 004 (2013), doi:10.1007/JHEP12(2013)004. · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[16] S. Pal, J. Qiao and S. Rychkov, Twist accumulation in conformal field theory: A rigorous approach to the lightcone bootstrap, Commun. Math. Phys. (2023), doi:10.1007/s00220-023-04767-w. · Zbl 1531.81207 · doi:10.1007/s00220-023-04767-w
[17] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, J. High Energy Phys. 11, 140 (2013), doi:10.1007/JHEP11(2013)140. · doi:10.1007/JHEP11(2013)140
[18] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quantum Gravity 30, 104003 (2013), doi:10.1088/0264-9381/30/10/104003. · Zbl 1269.83053 · doi:10.1088/0264-9381/30/10/104003
[19] L. F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119, 111601 (2017), doi:10.1103/PhysRevLett.119.111601. · doi:10.1103/PhysRevLett.119.111601
[20] L. F. Alday, Solving CFTs with weakly broken higher spin symmetry, J. High Energy Phys. 10, 161 (2017), doi:10.1007/JHEP10(2017)161. · Zbl 1383.81149 · doi:10.1007/JHEP10(2017)161
[21] L. F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin sym-metry, J. High Energy Phys. 06, 091 (2016), doi:10.1007/JHEP06(2016)091. · Zbl 1388.81753 · doi:10.1007/JHEP06(2016)091
[22] A. N. Manashov, E. D. Skvortsov and M. Strohmaier, Higher spin currents in the critical O(N ) vector model at 1/N 2 , J. High Energy Phys. 08, 106 (2017), doi:10.1007/JHEP08(2017)106. · Zbl 1381.81119 · doi:10.1007/JHEP08(2017)106
[23] A. N. Manashov and E. D. Skvortsov, Higher-spin currents in the Gross-Neveu model at 1/N 2 , J. High Energy Phys. 01, 132 (2017), doi:10.1007/JHEP01(2017)132. · Zbl 1373.81336 · doi:10.1007/JHEP01(2017)132
[24] S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin symmetry, J. High Energy Phys. 11, 068 (2016), doi:10.1007/JHEP11(2016)068. · Zbl 1390.81510 · doi:10.1007/JHEP11(2016)068
[25] S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash and E. Skvortsov, On the higher-spin spectrum in large N Chern-Simons vector models, J. High Energy Phys. 01, 058 (2017), doi:10.1007/JHEP01(2017)058. · Zbl 1373.81325 · doi:10.1007/JHEP01(2017)058
[26] S. Giombi, V. Kirilin and E. Skvortsov, Notes on spinning operators in fermionic CFT, J. High Energy Phys. 05, 041 (2017), doi:10.1007/JHEP05(2017)041. · Zbl 1380.81318 · doi:10.1007/JHEP05(2017)041
[27] S. Rychkov and Z. M. Tan, The ε-expansion from conformal field theory, J. Phys. A: Math. Theor. 48, 29FT01 (2015), doi:10.1088/1751-8113/48/29/29ft01. · Zbl 1320.81082 · doi:10.1088/1751-8113/48/29/29ft01
[28] K. Nii, Classical equation of motion and anomalous dimensions at leading order, J. High Energy Phys. 07, 107 (2016), doi:10.1007/JHEP07(2016)107. · Zbl 1390.81171 · doi:10.1007/JHEP07(2016)107
[29] V. G. Charan and S. Prakash, On the higher spin spectrum of Chern-Simons theory coupled to fermions in the large flavour limit, J. High Energy Phys. 02, 094 (2018), doi:10.1007/JHEP02(2018)094. · Zbl 1387.58028 · doi:10.1007/JHEP02(2018)094
[30] L. F. Alday and J. Maldacena, Comments on operators with large spin, J. High Energy Phys. 11, 019 (2007), doi:10.1088/1126-6708/2007/11/019. · Zbl 1245.81257 · doi:10.1088/1126-6708/2007/11/019
[31] N. Su, The hybrid bootstrap, (arXiv preprint) doi:10.48550/arXiv.2202.07607. · doi:10.48550/arXiv.2202.07607
[32] J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quantum Gravity 30, 104003 (2013), doi:10.1088/0264-9381/30/10/104003. · Zbl 1269.83053 · doi:10.1088/0264-9381/30/10/104003
[33] L. Girardello, M. Porrati and A. Zaffaroni, 3D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS, Phys. Lett. B 561, 289 (2003), doi:10.1016/S0370-2693(03)00492-1. · Zbl 1094.81549 · doi:10.1016/S0370-2693(03)00492-1
[34] R. G. Leigh and A. C. Petkou, Holography of the N = 1 higher-spin theory on AdS 4 , J. High Energy Phys. 06, 011 (2003), doi:10.1088/1126-6708/2003/06/011. · doi:10.1088/1126-6708/2003/06/011
[35] W. Li, Ising model close to ε = d -2, Phys. Rev. D 105, L091902 (2022), doi:10.1103/PhysRevD.105.L091902. · doi:10.1103/PhysRevD.105.L091902
[36] Y.-C. He, J. Rong and N. Su, A roadmap for bootstrapping critical gauge theories: Decou-pling operators of conformal field theories in d > 2 dimensions, SciPost Phys. 11, 111 (2021), doi:10.21468/SciPostPhys.11.6.111. · doi:10.21468/SciPostPhys.11.6.111
[37] D. Delmastro, J. Gomis and M. Yu, Infrared phases of 2d QCD, J. High Energy Phys. 02, 157 (2023), doi:10.1007/JHEP02(2023)157. · Zbl 1541.81207 · doi:10.1007/JHEP02(2023)157
[38] M. S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, J. High Energy Phys. 11, 071 (2011), doi:10.1007/JHEP11(2011)071. · Zbl 1306.81207 · doi:10.1007/JHEP11(2011)071
[39] R. K. Kaul and S. Sachdev, Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions, Phys. Rev. B 77, 155105 (2008), doi:10.1103/PhysRevB.77.155105. · doi:10.1103/PhysRevB.77.155105
[40] S. Benvenuti and H. Khachatryan, Easy-plane QED 3 ’s in the large N f limit, J. High Energy Phys. 05, 214 (2019), doi:10.1007/JHEP05(2019)214. · doi:10.1007/JHEP05(2019)214
[41] S. M. Chester and S. S. Pufu, Anomalous dimensions of scalar operators in QED 3 , J. High Energy Phys. 08, 069 (2016), doi:10.1007/JHEP08(2016)069. · Zbl 1390.81279 · doi:10.1007/JHEP08(2016)069
[42] J. A. Gracey, Electron mass anomalous dimension at O(1/N 2 f ) in quantum electrodynamics, Phys. Lett. B 317, 415 (1993), doi:10.1016/0370-2693(93)91017-H. · doi:10.1016/0370-2693(93)91017-H
[43] R. Boyack, A. Rayyan and J. Maciejko, Deconfined criticality in the QED 3 Gross-Neveu-Yukawa model: The 1/N expansion revisited, Phys. Rev. B 99, 195135 (2019), doi:10.1103/PhysRevB.99.195135. · doi:10.1103/PhysRevB.99.195135
[44] M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: A review, Phys. Rep. 385, 69 (2003), doi:10.1016/S0370-1573(03)00263-1. · Zbl 1031.81065 · doi:10.1016/S0370-1573(03)00263-1
[45] K. G. Wilson and M. E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28, 240 (1972), doi:10.1103/PhysRevLett.28.240. · doi:10.1103/PhysRevLett.28.240
[46] M. V. Kompaniets and E. Panzer, Minimally subtracted six-loop renormalization of O(N)-symmetric φ 4 theory and critical exponents, Phys. Rev. D 96, 036016 (2017), doi:10.1103/PhysRevD.96.036016. · doi:10.1103/PhysRevD.96.036016
[47] D. J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theo-ries, Phys. Rev. D 10, 3235 (1974), doi:10.1103/PhysRevD.10.3235. · doi:10.1103/PhysRevD.10.3235
[48] N. Zerf, L. N. Mihaila, P. Marquard, I. F. Herbut and M. M. Scherer, Four-loop crit-ical exponents for the Gross-Neveu-Yukawa models, Phys. Rev. D 96, 096010 (2017), doi:10.1103/PhysRevD.96.096010. · doi:10.1103/PhysRevD.96.096010
[49] B. I. Halperin, T. C. Lubensky and S.-k. Ma, First-order phase transitions in su-perconductors and smectic -A liquid crystals, Phys. Rev. Lett. 32, 292 (1974), doi:10.1103/PhysRevLett.32.292. · doi:10.1103/PhysRevLett.32.292
[50] J. Braun, H. Gies, L. Janssen and D. Roscher, Phase structure of many-flavor QED 3 , Phys. Rev. D 90, 036002 (2014), doi:10.1103/PhysRevD.90.036002. · doi:10.1103/PhysRevD.90.036002
[51] L. Di Pietro, Z. Komargodski, I. Shamir and E. Stamou, Quantum electrodynam-ics in d = 3 from the ε expansion, Phys. Rev. Lett. 116, 131601 (2016), doi:10.1103/PhysRevLett.116.131601. · doi:10.1103/PhysRevLett.116.131601
[52] S. Giombi, I. R. Klebanov and G. Tarnopolsky, Conformal QED d , F-theorem and the ε expansion, J. Phys. A: Math. Theor. 49, 135403 (2016), doi:10.1088/1751-8113/49/13/135403. · Zbl 1348.81454 · doi:10.1088/1751-8113/49/13/135403
[53] N. Zerf, P. Marquard, R. Boyack and J. Maciejko, Critical behavior of the QED 3 -Gross-Neveu-Yukawa model at four loops, Phys. Rev. B 98, 165125 (2018), doi:10.1103/PhysRevB.98.165125. · doi:10.1103/PhysRevB.98.165125
[54] E. Brézin and J. Zinn-Justin, Renormalization of the nonlinear σ model in 2 + ε di-mensions -Application to the Heisenberg ferromagnets, Phys. Rev. Lett. 36, 691 (1976), doi:10.1103/PhysRevLett.36.691. · doi:10.1103/PhysRevLett.36.691
[55] N. A. Kivel, A. S. Stepanenko and A. N. Vasil’ev, On the calculation of 2 + ε RG functions in the Gross-Neveu model from large-N expansions of critical exponents, Nucl. Phys. B 424, 619 (1994), doi:10.1016/0550-3213(94)90411-1. · doi:10.1016/0550-3213(94)90411-1
[56] S. El-Showk, et al., Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112, 141601 (2014), doi:10.1103/PhysRevLett.112.141601. · doi:10.1103/PhysRevLett.112.141601
[57] A. Cappelli, L. Maffi and S. Okuda, Critical Ising model in varying dimension by conformal bootstrap, J. High Energy Phys. 01, 161 (2019), doi:10.1007/JHEP01(2019)161. · Zbl 1409.81112 · doi:10.1007/JHEP01(2019)161
[58] S. Giombi, G. Tarnopolsky and I. R. Klebanov, On C J and C T in conformal QED, J. High Energy Phys. 08, 156 (2016), doi:10.1007/JHEP08(2016)156. · Zbl 1390.81511 · doi:10.1007/JHEP08(2016)156
[59] J. Zinn-Justin, Quantum field theory and critical phenomena, Oxford University Press, Oxford, UK, ISBN 9780198834625 (2021). · Zbl 1461.81002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.