×

Quantum vacuum effects on the final fate of a collapsing ball of dust. (English) Zbl 1377.83058

Summary: We consider the quantum vacuum effects of the massless scalar fields that are non-minimally coupled to the background geometry of a collapsing homogeneous ball of dust. It is shown that for a definite range of coupling constants, there are repulsive quantum vacuum effects, capable of stopping the collapse process inside the black hole and precluding the formation of singularity. The final fate of the collapse will be a black hole with no singularity, inside which the matter stays balanced. The density of the final static matter will be close to the Planck density. We show that the largest possible radius of the stable static ball inside a black hole with Schwarzschild mass \(M\) is given by \( {\left(\frac{1}{90\pi} \frac{M}{m_p}\right)}^{{1}/{3}}{\ell}_p \). If the black hole undergoes Hawking radiation, the final state will be an extremal quantum-corrected black hole, with zero temperature, with a remnant of matter inside. We show that the resolution of singularity is not disrupted under Hawking radiation.

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
83C47 Methods of quantum field theory in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C57 Black holes
80A10 Classical and relativistic thermodynamics
81T20 Quantum field theory on curved space or space-time backgrounds

References:

[1] P.S. Joshi and D. Malafarina, Recent developments in gravitational collapse and spacetime singularities, Int. J. Mod. Phys.D 20 (2011) 2641 [arXiv:1201.3660] [INSPIRE]. · Zbl 1263.83011 · doi:10.1142/S0218271811020792
[2] I.H. Dwivedi and P.S. Joshi, Initial data and the final fate of inhomogeneous dust collapse, Class. Quant. Grav.14 (1997) 1223 [gr-qc/9612023] [INSPIRE]. · Zbl 0873.53071
[3] D. Malafarina and P.S. Joshi, Gravitational collapse with non-vanishing tangential pressure, Int. J. Mod. Phys.D 20 (2011) 463 [arXiv:1009.2169] [INSPIRE]. · Zbl 1220.83035 · doi:10.1142/S0218271811018901
[4] S. Satin, D. Malafarina and P.S. Joshi, Genericity aspects of black hole formation in the collapse of spherically symmetric slightly inhomogeneous perfect fluids, Int. J. Mod. Phys.D 25 (2016) 1650023 [arXiv:1409.0505] [INSPIRE]. · Zbl 1337.83042 · doi:10.1142/S0218271816500231
[5] C. Bambi, D. Malafarina and L. Modesto, Terminating black holes in asymptotically free quantum gravity, Eur. Phys. J.C 74 (2014) 2767 [arXiv:1306.1668] [INSPIRE]. · doi:10.1140/epjc/s10052-014-2767-9
[6] C. Bambi, D. Malafarina and L. Modesto, Non-singular quantum-inspired gravitational collapse, Phys. Rev.D 88 (2013) 044009 [arXiv:1305.4790] [INSPIRE].
[7] L. Modesto, Disappearance of black hole singularity in quantum gravity, Phys. Rev.D 70 (2004) 124009 [gr-qc/0407097] [INSPIRE].
[8] R. Torres, Singularity-free gravitational collapse and asymptotic safety, Phys. Lett.B 733 (2014) 21 [arXiv:1404.7655] [INSPIRE]. · Zbl 1370.85003 · doi:10.1016/j.physletb.2014.04.010
[9] R. Torres and F. Fayos, On the quantum corrected gravitational collapse, Phys. Lett.B 747 (2015) 245 [arXiv:1503.07407] [INSPIRE]. · Zbl 1369.85007 · doi:10.1016/j.physletb.2015.05.078
[10] C. Vaz, Quantum gravitational dust collapse does not result in a black hole, Nucl. Phys.B 891 (2015) 558 [arXiv:1407.3823] [INSPIRE]. · Zbl 1328.83067 · doi:10.1016/j.nuclphysb.2014.12.021
[11] S.A. Hayward, Formation and evaporation of regular black holes, Phys. Rev. Lett.96 (2006) 031103 [gr-qc/0506126] [INSPIRE]. · Zbl 1369.85007
[12] M. Patil, P.S. Joshi and D. Malafarina, Naked singularities as particle accelerators II, Phys. Rev.D 83 (2011) 064007 [arXiv:1102.2030] [INSPIRE].
[13] P.S. Joshi and I.H. Dwivedi, Naked singularities in spherically symmetric inhomogeneous Tolman-Bondi dust cloud collapse, Phys. Rev.D 47 (1993) 5357 [gr-qc/9303037] [INSPIRE].
[14] A. Bonanno and M. Reuter, Renormalization group improved black hole space-times, Phys. Rev.D 62 (2000) 043008 [hep-th/0002196] [INSPIRE].
[15] S. Hossenfelder, L. Modesto and I. Prémont-Schwarz, A model for non-singular black hole collapse and evaporation, Phys. Rev.D 81 (2010) 044036 [arXiv:0912.1823] [INSPIRE].
[16] R. Casadio, Quantum gravitational fluctuations and the semiclassical limit, Int. J. Mod. Phys.D 9 (2000) 511 [gr-qc/9810073] [INSPIRE].
[17] C. Barceló, S. Liberati, S. Sonego and M. Visser, Fate of gravitational collapse in semiclassical gravity, Phys. Rev.D 77 (2008) 044032 [arXiv:0712.1130] [INSPIRE].
[18] J. Abedi and H. Arfaei, Obstruction of black hole singularity by quantum field theory effects, JHEP03 (2016) 135 [arXiv:1506.05844] [INSPIRE]. · Zbl 1388.83361 · doi:10.1007/JHEP03(2016)135
[19] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K., (1982) [INSPIRE]. · Zbl 0476.53017
[20] L.E. Parker and D.J. Toms, Quantum field theory in curved spacetime, Cambridge University Press, Cambridge U.K., (2009) [INSPIRE]. · Zbl 1180.81001 · doi:10.1017/CBO9780511813924
[21] T.S. Bunch and L. Parker, Feynman propagator in curved space-time: a momentum space representation, Phys. Rev.D 20 (1979) 2499 [INSPIRE].
[22] B.S. DeWitt, Quantum field theory in curved space-time, Phys. Rept.19 (1975) 295 [INSPIRE]. · doi:10.1016/0370-1573(75)90051-4
[23] J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.82 (1951) 664 [INSPIRE]. · Zbl 0043.42201 · doi:10.1103/PhysRev.82.664
[24] J.H. Van Vleck, The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Nat. Acad. Sci.14 (1928) 178 [INSPIRE]. · JFM 54.0976.01 · doi:10.1073/pnas.14.2.178
[25] M.D. Schwartz, Quantum field theory and the Standard Model, Cambridge University Press, Cambridge U.K., (2014) [INSPIRE].
[26] J.R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys. Rev.56 (1939) 455 [INSPIRE]. · Zbl 0022.28104 · doi:10.1103/PhysRev.56.455
[27] S. Datt, Über eine Klasse von Lösungen der Gravitationsgleichungen der Relativität (in German), Z. Phys.108 (1938) 314. · JFM 64.0768.02
[28] R.-G. Cai, L.-M. Cao and N. Ohta, Black holes in gravity with conformal anomaly and logarithmic term in black hole entropy, JHEP04 (2010) 082 [arXiv:0911.4379] [INSPIRE]. · Zbl 1272.83042 · doi:10.1007/JHEP04(2010)082
[29] L.H. Ford, Quantum vacuum energy in a closed universe, Phys. Rev.D 14 (1976) 3304 [INSPIRE].
[30] C.A.R. Herdeiro and M. Sampaio, Casimir energy and a cosmological bounce, Class. Quant. Grav.23 (2006) 473 [hep-th/0510052] [INSPIRE]. · Zbl 1087.83069 · doi:10.1088/0264-9381/23/2/012
[31] J.S. Dowker and R. Critchley, Vacuum stress tensor in an Einstein universe. Finite temperature effects, Phys. Rev.D 15 (1977) 1484 [INSPIRE]. · Zbl 0022.28104
[32] E. Poisson, A relativist’s toolkit: the mathematics of black-hole mechanics, Cambridge University Press, Cambridge U.K., (2004). · Zbl 1058.83002 · doi:10.1017/CBO9780511606601
[33] W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [INSPIRE].
[34] S.W. Hawking, Black hole explosions, Nature248 (1974) 30 [INSPIRE]. · Zbl 1370.83053 · doi:10.1038/248030a0
[35] S.W. Hawking, Black holes and thermodynamics, Phys. Rev.D 13 (1976) 191 [INSPIRE].
[36] S.B. Giddings, Black holes and massive remnants, Phys. Rev.D 46 (1992) 1347 [hep-th/9203059] [INSPIRE].
[37] P. Chen, Y.C. Ong and D.-H. Yeom, Black hole remnants and the information loss paradox, Phys. Rept.603 (2015) 1 [arXiv:1412.8366] [INSPIRE]. · doi:10.1016/j.physrep.2015.10.007
[38] H.M. Haggard and C. Rovelli, Quantum-gravity effects outside the horizon spark black to white hole tunneling, Phys. Rev.D 92 (2015) 104020 [arXiv:1407.0989] [INSPIRE].
[39] A. Ashtekar, T. Pawlowski, P. Singh and K. Vandersloot, Loop quantum cosmology of k = 1 FRW models, Phys. Rev.D 75 (2007) 024035 [gr-qc/0612104] [INSPIRE]. · Zbl 1197.83048
[40] R. Gambini and J. Pullin, Loop quantization of the Schwarzschild black hole, Phys. Rev. Lett.110 (2013) 211301 [arXiv:1302.5265] [INSPIRE]. · doi:10.1103/PhysRevLett.110.211301
[41] A. Corichi and P. Singh, Loop quantization of the Schwarzschild interior revisited, Class. Quant. Grav.33 (2016) 055006 [arXiv:1506.08015] [INSPIRE]. · Zbl 1336.83021 · doi:10.1088/0264-9381/33/5/055006
[42] C.G. Boehmer and K. Vandersloot, Loop quantum dynamics of the Schwarzschild interior, Phys. Rev.D 76 (2007) 104030 [arXiv:0709.2129] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.