×

Euler sums of generalized alternating hyperharmonic numbers. (English) Zbl 1497.11054

Summary: We define the notion of the generalized alternating hyperharmonic numbers, and show that Euler sums of the generalized alternating hyperharmonic numbers can be expressed in terms of linear combinations of classical (alternating) Euler sums.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
11M06 \(\zeta (s)\) and \(L(s, \chi)\)

References:

[1] T. Arakawa, T. Ibukiyama, and M. Kaneko, Bernoulli numbers and zeta functions, Springer, 2014. · Zbl 1312.11015 · doi:10.1007/978-4-431-54919-2
[2] A. Bazsó and I. Mező, “Some notes on alternating power sums of arithmetic progressions”, J. Integer Seq. 21:7 (2018), Art. 18.7.8, 8. · Zbl 1453.11034
[3] A. T. Benjamin, D. Gaebler, and R. Gaebler, “A combinatorial approach to hyperharmonic numbers”, Integers 3 (2003), A15, 9. · Zbl 1128.11309
[4] W. Y. C. Chen, A. M. Fu, and I. F. Zhang, “Faulhaber’s theorem on power sums”, Discrete Math. 309:10 (2009), 2974-2981. · Zbl 1220.11027 · doi:10.1016/j.disc.2008.07.027
[5] J. H. Conway and R. K. Guy, The book of numbers, Copernicus, New York, 1996. · Zbl 0866.00001 · doi:10.1007/978-1-4612-4072-3
[6] A. Dil and K. N. Boyadzhiev, “Euler sums of hyperharmonic numbers”, J. Number Theory 147 (2015), 490-498. · Zbl 1311.11019 · doi:10.1016/j.jnt.2014.07.018
[7] A. Dil, I. Mező, and M. Cenkci, “Evaluation of Euler-like sums via Hurwitz zeta values”, Turkish J. Math. 41:6 (2017), 1640-1655. · Zbl 1424.11130 · doi:10.3906/mat-1603-4
[8] P. Flajolet and B. Salvy, “Euler sums and contour integral representations”, Experiment. Math. 7:1 (1998), 15-35. · Zbl 0920.11061 · doi:10.1080/10586458.1998.10504356
[9] F. T. Howard, “Sums of powers of integers via generating functions”, Fibonacci Quart. 34:3 (1996), 244-256. · Zbl 0859.11016
[10] K. Kamano, “Dirichlet series associated with hyperharmonic numbers”, Mem. Osaka Inst. Tech. Ser. A 56:2 (2011), 11-15.
[11] R. Li, “Euler sums of generalized hyperharmonic numbers”, preprint, 2021.
[12] Y. Matsuoka, “On the values of a certain Dirichlet series at rational integers”, Tokyo J. Math. 5:2 (1982), 399-403. · Zbl 0505.10020 · doi:10.3836/tjm/1270214900
[13] I. Mező and A. Dil, “Hyperharmonic series involving Hurwitz zeta function”, J. Number Theory 130:2 (2010), 360-369. · Zbl 1225.11032 · doi:10.1016/j.jnt.2009.08.005
[14] N. Ömür and S. Koparal, “On the matrices with the generalized hyperharmonic numbers of order \[r\]”, Asian-Eur. J. Math. 11:3 (2018), 1850045, 9 · Zbl 1391.11056 · doi:10.1142/S1793557118500456
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.