×

Stability of chemical reaction fronts in solids: analytical and numerical approaches. (English) Zbl 1532.74035

Summary: Localized chemical reactions in deformable solids are considered. A chemical transformation is accompanied by the transformation strain and emerging mechanical stresses, which affect the kinetics of the chemical reaction front to the reaction arrest. A chemo-mechanical coupling via the chemical affinity tensor is used, in which the stresses affect the reaction rate. The emphasis is made on the stability of the propagating reaction front in the vicinity of the blocked state. There are two major novel contributions. First, it is shown that for a planar reaction front, the diffusion of the gaseous-type reactant does not influence the stability of the reaction front – the stability is governed only by the mechanical properties of solid reactants and stresses induced by the transformation strain and the external loading, which corresponds to the mathematically analogous phase transition problem. Second, the comparison of two computational approaches to model the reaction front propagation is performed – the standard finite-element method with a remeshing technique to resolve the moving interface is compared to the cut-finite-element-based approach, which allows the interface to cut through the elements and to move independently of the finite-element mesh. For stability problems considered in the present paper, the previously-developed implementation of the cut-element approach has been extended with the additional post-processing procedure that obtains more accurate stresses and strains, relying on the fact that the structured grid is used in the implementation. The approaches are compared using a range of chemo-mechanical problems with stable and unstable reaction fronts.

MSC:

74F25 Chemical and reactive effects in solid mechanics

Software:

CutFEM

References:

[1] Abali, B. E., Modeling mechanochemistry in Li-ion batteries, 79-91
[2] Abeyaratne, R.; Knowles, J. K., Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal., 119-154 (1991) · Zbl 0745.73001
[3] Abeyaratne, R.; Knowles, J. K., Evolution of Phase Transitions: A Continuum Theory (2006), Cambridge University Press
[4] Ahmad, Z.; Viswanathan, V., Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys. Rev. Lett. (2017)
[5] Anders, D.; Hesch, C.; Weinberg, K., Computational modeling of phase separation and coarsening in solder alloys. Int. J. Solids Struct., 13, 1557-1572 (2012)
[6] Arafat, Y.; Yang, H.; Dutta, I.; Kumar, P. A.; Datta, B., A model for intermetallic growth in thin Sn joints between Cu substrates: Application to solder microjoints. J. Electron. Mater., 3367-3382 (2020)
[7] Barvosa-Carter, W.; Aziz, M. J.; Gray, L. J.; Kaplan, T., Kinetically driven growth instability in stressed solids. Phys. Rev. Lett., 7, 1445-1448 (1998)
[8] Barvosa-Carter, W.; Aziz, M. J.; Phan, A. V.; Kaplan, T.; Gray, L. J., Interfacial roughening during solid phase epitaxy: Interaction of dopant, stress, and anisotropy effects. J. Appl. Phys., 10, 5462-5468 (2004)
[9] Berezovski, A.; Engelbrecht, J.; Maugin, G. A., Numerical Simulation of Waves and Fronts in Inhomogeneous Solids (2008), World Scientific · Zbl 1155.74002
[10] Berezovski, A.; Maugin, G. A., Stress-induced phase-transition front propagation in thermoelastic solids. Eur. J. Mech. — A/Solids, 1-21 (2005) · Zbl 1063.74077
[11] Böhme, T.; Müller, W. H.; Weinberg, K., Numerical modeling of diffusion induced phase transformations in mechanically stressed lead-free alloys. Comput. Mater. Sci., 3, 837-844 (2009)
[12] Brassart, L.; Suo, Z., Reactive flow in large-deformation electrodes of lithium-ion batteries. Int. J. Appl. Mech., 3 (2012)
[13] Brassart, L.; Suo, Z., Reactive flow in solids. J. Mech. Phys. Solids, 1, 61-77 (2013)
[14] Burman, E.; Elfverson, D.; Hansbo, P.; Larson, M. G.; Larsson, K., Shape optimization using the cut finite element method. Comput. Methods Appl. Mech. Engrg., 242-261 (2018) · Zbl 1439.74316
[15] Burman, E.; Elfverson, D.; Hansbo, P.; Larson, M. G.; Larsson, K., Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions. Comput. Methods Appl. Mech. Engrg., 462-479 (2019) · Zbl 1441.74152
[16] Burman, E.; Elfverson, D.; Hansbo, P.; Larson, M. G.; Larsson, K., Hybridized CutFEM for elliptic interface problems. SIAM J. Sci. Comput., 5, A3354-A3380 (2019) · Zbl 1435.65193
[17] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math., 4, 328-341 (2012) · Zbl 1316.65099
[18] Büttner, C. C.; Zacharias, M., Retarded oxidation of Si nanowires. Appl. Phys. Lett., 26 (2006)
[19] Cui, Z. W.; Gao, F.; Qu, J. M., A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids, 7, 1280-1295 (2012)
[20] Cui, Z. W.; Gao, F.; Qu, J. M., Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. J. Mech. Phys. Solids, 2, 293-310 (2013)
[21] Doux, J.-M.; Nguyen, H.; Tan, D. H.S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S., Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater., 1 (2020)
[22] Duddu, R.; Chopp, D. L.; Voorhees, P.; Moran, B., Diffusional evolution of precipitates in elastic media using the extended finite element and the level set methods. J. Comput. Phys., 4, 1249-1264 (2011) · Zbl 1390.74153
[23] Eremeev, V. A.; Freidin, A. B.; Sharipova, L. L., Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. Doklady Phys., 7, 359-363 (2003)
[24] Eumelen, G. J.A. M.; Bosco, E.; Suiker, A. S.J.; Hermans, J. J., Chemo-mechanical model for degradation of oil paintings by amorphous and crystalline metal soaps. Eur. J. Mech. — A/Solids (2023) · Zbl 1506.74097
[25] Eumelen, G. J.A. M.; Bosco, E.; Suiker, A. S.J.; van Loon, A.; Iedema, P. D., A computational model for chemo-mechanical degradation of historical oil paintings due to metal soap formation. J. Mech. Phys. Solids (2019)
[26] Freidin, A. B., Chemical affinity tensor and stress-assist chemical reactions front propagation in solids, V009T10A102
[27] Freidin, A. B.; Korolev, I. K.; Aleshchenko, S. P., FEM-simulations of a chemical reaction front propagation in an elastic solid with a cylindrical hole, 195-208
[28] Freidin, A. B.; Korolev, I. K.; Aleshchenko, S. P.; Vilchevskaya, E. N., Chemical affinity tensor and chemical reaction front propagation: Theory and FE-simulations. Int. J. Fract., 2, 245-259 (2016)
[29] Freidin, A. B.; Sharipova, L. L.; Cherkaev, A. V., On equilibrium two-phase microstructures at plane strain. Acta Mech., 5, 2005-2021 (2021) · Zbl 1491.74082
[30] Freidin, A. B.; Vilchevskaya, E. N., Chemical affinity tensor in coupled problems of mechanochemistry · Zbl 1332.74019
[31] Freidin, A. B.; Vilchevskaya, E. N.; Korolev, I. K., Stress-assist chemical reactions front propagation in deformable solids. Internat. J. Engrg. Sci., 57-75 (2014) · Zbl 1423.74328
[32] Fried, E., Stability of a two-phase process involving a planar phase boundary in a thermoelastic solid. Contin. Mech. Thermodyn., 1, 59-79 (1992) · Zbl 0772.73004
[33] Fried, E., Stability of a two-phase process in an elastic solid. J. Elasticity, 3, 163-187 (1993) · Zbl 0850.73123
[34] Fu, Y. B.; Freidin, A. B., Characterization and stability of two-phase piecewise-homogeneous deformations. Proc. R. Soc. A: Math. Phys. Eng. Sci., 3065-3094 (2004) · Zbl 1092.74031
[35] Gao, T.; Lu, W., Surface instability of metal anode in all-solid-state batteries. Int. J. Solids Struct. (2022)
[36] Glansdorff, P.; Prigogine, I., Thermodynamic Theory of Structure, Stability and Fluctuations (1971), John Wiley & Sons Ltd · Zbl 0246.73005
[37] Grinfeld, M., Thermodynamic Methods in the Theory of Heterogeneous Systems (1991), Longman Sc & Tech · Zbl 0752.73001
[38] Gross, D.; Müller, R.; Kolling, S., Configurational forces — morphology evolution and finite elements. Mech. Res. Commun., 6, 529-536 (2002) · Zbl 1094.74544
[39] Gurtin, M. E., Two-phase deformations of elastic solids. Arch. Ration. Mech. Anal., 1, 1-29 (1983) · Zbl 0525.73054
[40] Gurtin, M. E., Configurational Forces as Basic Concepts of Continuum Physics (2000), Springer-Verlag New York · Zbl 0951.74003
[41] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 5537-5552 (2002) · Zbl 1035.65125
[42] Hansbo, P.; Larson, M. G.; Larsson, K., Cut finite element methods for linear elasticity problems, 25-63 · Zbl 1390.74180
[43] Heidemeyer, H.; Single, C.; Zhou, F.; Prins, F. E.; Kern, D. P.; Plies, E., Self-limiting and pattern dependent oxidation of silicon dots fabricated on silicon-on-insulator material. J. Appl. Phys., 9, 4580-4585 (2000)
[44] Hüter, C.; Fu, S.; Finsterbusch, M.; Figgemeier, E.; Wells, L.; Spatschek, R., Electrode-electrolyte interface stability in solid state electrolyte systems: Influence of coating thickness under varying residual stresses. AIMS Mater. Sci., 4, 867-877 (2017)
[45] Jia, Z.; Li, T., Stress-modulated driving force for lithiation reaction in hollow nano-anodes. J. Power Sources, 866-876 (2015)
[46] Jou, H. J.; Leo, P. H.; Lowengrub, J. S., Microstructural evolution in inhomogeneous elastic media. J. Comput. Phys., 1, 109-148 (1997) · Zbl 0880.73050
[47] Kao, D. B.; McVittie, J. P.; Nix, W. D.; Saraswat, K. C., Two-dimensional thermal-oxidation of silicon — II. Modeling stress effects in wet oxides. IEEE Trans. Electron Devices, 1, 25-37 (1988)
[48] Kim, H. K.; Tu, K. N., Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening. Phys. Rev. B, 23, 16027-16034 (1996)
[49] Levitas, V. I.; Attariani, H., Anisotropic compositional expansion in elastoplastic materials and corresponding chemical potential: Large-strain formulation and application to amorphous lithiated silicon. J. Mech. Phys. Solids, 84-111 (2014) · Zbl 1328.74025
[50] Liu, I. S., On interface equilibrium and inclusion problems. Contin. Mech. Thermodyn., 177-186 (1992) · Zbl 0825.73030
[51] Liu, X. H.; Fan, F.; Yang, H.; Zhang, S.; Huang, J. Y.; Zhu, T., Self-limiting lithiation in silicon nanowires. ACS Nano, 2, 1495-1503 (2013)
[52] Liu, X. H.; Wang, J. W.; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, S. A.; Davydov, A. V.; Mao, S. X.; Picraux, S. T.; Zhang, S.; Li, J.; Zhu, T.; Huang, J. Y., In situ atomic-scale imaging of electrochemical lithiation in silicon. Nature Nanotechnol., 11, 749-756 (2012)
[53] Liu, X. H.; Zheng, H.; Zhong, L.; Huan, S.; Karki, K.; Zhang, L. Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W.; Cho, J. H.; Epstein, E.; Dayeh, S. A.; Picraux, S. T.; Zhu, T.; Li, J.; Sullivan, J. P.; Cumings, J.; Wang, C. S.; Mao, S. X.; Ye, Z. Z.; Zhang, S. L.; Huang, J. Y., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett., 8, 3312-3318 (2011)
[54] Marcus, R. B.; Sheng, T. T., The oxidation of shaped silicon surfaces. J. Electrochem. Soc., 6, 1278-1282 (1982)
[55] Maugin, G. A., Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics (2010), Chapman and Hall/CRC · Zbl 1234.74002
[56] McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y., 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater., 36, 4966-4984 (2013)
[57] Mihalyi, A.; Jaccodine, R. J.; Delph, T. J., Stress effects in the oxidation of planar silicon substrates. Appl. Phys. Lett., 14, 1981-1983 (1999)
[58] Monroe, C.; Newman, J., The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc., 2, A396 (2005)
[59] Morozov, A., Numerical and analytical studies of kinetics, equilibrium, and stability of the chemical reaction fronts in deformable solids (2021), Technische Universität Berlin, (Ph.D. thesis)
[60] Morozov, A.; Freidin, A. B.; Klinkov, V. A.; Semencha, A. V.; Müller, W. H.; Hauck, T., Experimental and theoretical studies of Cu-Sn intermetallic phase growth during high-temperature storage of eutectic SnAg interconnects. J. Electron. Mater., 7194-7210 (2020)
[61] Morozov, A.; Freidin, A. B.; Müller, W. H., Stability of chemical reaction fronts in the vicinity of a blocking state. PNRPU Mech. Bull., 58-64 (2019)
[62] Morozov, A.; Freidin, A. B.; Müller, W. H., On stress-affected propagation and stability of chemical reaction fronts in solids. Internat. J. Engrg. Sci. (2023) · Zbl 1532.74034
[63] Morozov, A., Freidin, A., Müller, W.H., Semencha, A., Tribunskiy, M., 2019b. Modeling temperature dependent chemical reaction of intermetallic compound growth. In: 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. EuroSimE, Hannover, Germany, pp. 1-8.
[64] Morozov, A.; Khakalo, S.; Balobanov, V.; Freidin, A. B.; Müller, W. H.; Niiranen, J., Modeling chemical reaction front propagation by using an isogeometric analysis. Tech. Mech., 1, 73-90 (2018)
[65] Muhlstein, C. L.; Ritchie, R. O., High-cycle fatigue of micron-scale polycrystalline silicon films: Fracture mechanics analyses of the role of the silica/silicon interface. Int. J. Fract., 4-2, 449-474 (2003)
[66] Muhlstein, C. L.; Stach, E. A.; Ritchie, R. O., Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems. Appl. Phys. Lett., 9, 1532-1534 (2002)
[67] Muhlstein, C. L.; Stach, E. A.; Ritchie, R. O., A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater., 14, 3579-3595 (2002)
[68] Müller, R.; Gross, D., 3D inhomogeneous, misfitting second phase particles-equilibrium shapes and morphological development. Comput. Mater. Sci., 1-4, 53-60 (1999)
[69] Natsiavas, P. P.; Weinberg, K.; Rosato, D.; Ortiz, M., Effect of prestress on the stability of electrode-electrolyte interfaces during charging in lithium batteries. J. Mech. Phys. Solids, 92-111 (2016)
[70] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1, 9-15 (1971) · Zbl 0229.65079
[71] Ortiz, M.; Repetto, E. A.; Si, H., A continuum model of kinetic roughening and coarsening in thin films. J. Mech. Phys. Solids, 4, 697-730 (1999) · Zbl 0962.76009
[72] Payen, D. J.; Bathe, K. J., The use of nodal point forces to improve element stresses. Comput. Struct., 5-6, 485-495 (2011)
[73] Payen, D. J.; Bathe, K. J., A stress improvement procedure. Comput. Struct., 311-326 (2012)
[74] Phan, A. V.; Kaplan, T.; Gray, L. J.; Adalsteinsson, D.; Sethian, J. A.; Barvosa-Carter, W.; Aziz, M. J., Modelling a growth instability in a stressed solid. Modelling Simul. Mater. Sci. Eng., 4, 309-325 (2001)
[75] Poluektov, M.; Figiel, L., A numerical method for finite-strain mechanochemistry with localised chemical reactions treated using a Nitsche approach. Comput. Mech., 5, 885-911 (2019) · Zbl 1468.74070
[76] Poluektov, M.; Freidin, A. B.; Figiel, L., Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiation reaction in spherical Si particles. Internat. J. Engrg. Sci., 44-62 (2018) · Zbl 1423.92260
[77] Prigogine, I.; Defay, R., Chemical Thermodynamics (1954), Longmans, Green
[78] Qin, L.; Wang, K.; Xu, H.; Zhou, M.; Yu, G.; Liu, C.; Sun, Z.; Chen, J., The role of mechanical pressure on dendritic surface toward stable lithium metal anode. Nano Energy (2020)
[79] Schaefer, M.; Fournelle, R. A.; Liang, J., Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control. J. Electron. Mater., 11, 1167-1176 (1998)
[80] Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B., Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions. Comput. Mech., 3, 277-295 (2018) · Zbl 1461.74007
[81] Schneider, D.; Schwab, F.; Schoof, E.; Reiter, A.; Herrmann, C.; Selzer, M.; Böhlke, T.; Nestler, B., On the stress calculation within phase-field approaches: A model for finite deformations. Comput. Mech., 2, 203-217 (2017) · Zbl 1386.74111
[82] Schuß, S.; Weinberg, K.; Hesch, C., Thermomigration in SnPb solders: Material model. Mech. Mater., 31-49 (2018)
[83] Šilhavy, M., The Mechanics and Thermodynamics of Continuous Media (1997), Springer-Verlag Berlin Heidelberg · Zbl 0870.73004
[84] Socrate, S.; Parks, D. M., Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys. Acta Metall. Mater., 7, 2185-2209 (1993)
[85] Su, C. H.; Voorhees, P. W., The dynamics of precipitate evolution in elastically stressed solids. 1. Inverse coarsening. Acta Mater., 5, 1987-1999 (1996)
[86] Su, C. H.; Voorhees, P. W., The dynamics of precipitate evolution in elastically stressed solids. 2. Particle alignment. Acta Mater., 5, 2001-2016 (1996)
[87] Suo, Z.; Ortiz, M.; Needleman, A., Stability of solids with interfaces. J. Mech. Phys. Solids, 3, 613-640 (1992) · Zbl 0760.73030
[88] Svendsen, B.; Shanthraj, P.; Raabe, D., Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids. J. Mech. Phys. Solids, 619-636 (2018)
[89] van Havenbergh, K.; Turner, S.; Marx, N.; van Tendeloo, G., The mechanical behavior during (de)lithiation of coated silicon nanoparticles as anode material for lithium-ion batteries studied by insitu transmission electron microscopy. Energy Technol., 8, 1005-1012 (2016)
[90] Viana, G.; Masson, R.; Michel, B.; Mathieu, B.; Gărăjeu, B., Stress level estimates in coated or uncoated silicon nanoparticles during lithiation. Eur. J. Mech. — A/Solids (2023) · Zbl 1535.74049
[91] Wang, Y.; Wang, Y.; Ma, L.; Han, J.; Guo, F., Effect of sn grain c-axis on Cu atomic motion in Cu reinforced composite solder joints under electromigration. J. Electron. Mater., 3, 2159-2163 (2020)
[92] Wang, Y.; Wu, H.; Sun, L.; Jiang, W.; Lu, C.; Ma, Z., Coupled electrochemical-mechanical modeling with strain gradient plasticity for lithium-ion battery electrodes. Eur. J. Mech. — A/Solids (2021) · Zbl 1472.74054
[93] Weinberg, K.; Werner, M.; Anders, D., A chemo-mechanical model of diffusion in reactive systems. Entropy, 2, 140 (2018)
[94] Wu, H.; Xie, Z.; Wang, Y.; Lu, C.; Ma, Z., Modeling diffusion-induced stress on two-phase lithiation in lithium-ion batteries. Eur. J. Mech. — A/Solids, 320-325 (2018) · Zbl 1406.74229
[95] Yeremeyev, V. A.; Freidin, A. B.; Sharipova, L. L., The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech., 1, 61-84 (2007)
[96] Zhao, X. J.; Bordas, S. P.A.; Qu, J. M., A hybrid smoothed extended finite element/level set method for modeling equilibrium shapes of nano-inhomogeneities. Comput. Mech., 6, 1417-1428 (2013) · Zbl 1398.74432
[97] Zhao, X. J.; Bordas, S. P.A.; Qu, J. M., Equilibrium morphology of misfit particles in elastically stressed solids under chemo-mechanical equilibrium conditions. J. Mech. Phys. Solids, 1-21 (2015)
[98] Zhao, X. J.; Duddu, R.; Bordas, S. P.A.; Qu, J. M., Effects of elastic strain energy and interfacial stress on the equilibrium morphology of misfit particles in heterogeneous solids. J. Mech. Phys. Solids, 6, 1433-1445 (2013)
[99] Zhao, K.; Pharr, M.; Hartle, L.; Vlassak, J. J.; Suo, Z., Fracture and debonding in lithium-ion batteries with electrodes of hollow core-shell nanostructures. J. Power Sources, 6-14 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.