×

Operator inference and physics-informed learning of low-dimensional models for incompressible flows. (English) Zbl 1505.76072

Summary: Reduced-order modeling has a long tradition in computational fluid dynamics. The ever-increasing significance of data for the synthesis of low-order models is well reflected in the recent successes of data-driven approaches such as Dynamic Mode Decomposition and Operator Inference. With this work, we discuss an approach to learning structured low-order models for incompressible flow from data that can be used for engineering studies such as control, optimization, and simulation. To that end, we utilize the intrinsic structure of the Navier-Stokes equations for incompressible flows and show that learning dynamics of the velocity and pressure can be decoupled, thus, leading to an efficient operator inference approach for learning the underlying dynamics of incompressible flows. Furthermore, we demonstrate the performance of the operator inference in learning low-order models using two benchmark problems and compare with an intrusive method, namely proper orthogonal decomposition, and other data-driven approaches.

MSC:

76M99 Basic methods in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76D25 Wakes and jets
68T05 Learning and adaptive systems in artificial intelligence

Software:

Loewner; NSFnets; AAA

References:

[1] M. I. AHMAD, P. BENNER, P. GOYAL,ANDJ. HEILAND,Moment-matching based model reduction for Navier-Stokes type quadratic-bilinear descriptor systems, Z. Angew. Math. Mech., 97 (2017), pp. 1252- · Zbl 07775416
[2] J. ANNONI, P. M. O. GEBRAAD,ANDP. J. SEILER,Wind farm flow modeling using an input-output reducedorder model, in 2016 American Control Conference, ACC 2016, Boston, July 6-8, 2016, IEEE Conference Proceedings, Los Alamitos, 2016, pp. 506-512.
[3] A. C. ANTOULAS, I. V. GOSEA,ANDA. C. IONITA,Model reduction of bilinear systems in the Loewner framework, SIAM J. Sci. Comput., 38 (2016), pp. B889-B916. · Zbl 1515.35038
[4] Z. BAI, E. KAISER, J. L. PROCTOR, J. N. KUTZ,ANDS. L. BRUNTON,Dynamic mode decomposition for compressive system identification, AIAA J., 58 (2020), pp. 561-574.
[5] M. BAUMANN, P. BENNER,ANDJ. HEILAND,Space-time Galerkin POD with application in optimal control of semi-linear parabolic partial differential equations, SIAM J. Sci. Comput., 40 (2018), pp. A1611- A1641. · Zbl 1392.35323
[6] M. BEHR, P. BENNER,ANDJ. HEILAND,Example setups of Navier-Stokes equations with control and observation: Spatial discretization and representation via linear-quadratic matrix coefficients, e-print arXiv:1707.08711, 2017.https://arxiv.org/abs/1707.08711.
[7] P. BENNER, P. GOYAL, B. KRAMER, B. PEHERSTORFER,ANDK. WILLCOX,Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms, Comp. Meth. Appl. Mech. Eng., 372 (2020), Art. 113433 (19 pages). · Zbl 1506.93015
[8] P. BENNER ANDJ. HEILAND,LQG-balanced truncation low-order controller for stabilization of laminar flows, in Active Flow and Combustion Control 2014, R. King, ed., vol. 127 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, Cham, 2015, pp. 365-379. · Zbl 1308.76105
[9] P. BENNER, C. HIMPE,ANDT. MITCHELL,On reduced input-output dynamic mode decomposition, Adv. Comput. Math., 44 (2018), pp. 1821-1844. · Zbl 1405.93051
[10] P. BENNER, J. SAAK,ANDM. M. UDDIN,Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control, Numer. Algebra Control Optim., 6 (2016), pp. 1-20. · Zbl 1330.93084
[11] S. A. BILLINGS ANDS. Y. FAKHOURI,Identification of systems containing linear dynamic and static nonlinear elements, Automatica, 18 (1982), pp. 15-26. · Zbl 0472.93067
[12] T. BREITEN, K. KUNISCH,ANDL. PFEIFFER,Feedback stabilization of the two-dimensional Navier-Stokes equations by value function approximation, Appl. Math. Optim., 80 (2019), pp. 599-641. · Zbl 1425.35135
[13] S. L. BRUNTON, J. L. PROCTOR,ANDJ. N. KUTZ,Discovering governing equations from data by sparse ETNA · Zbl 1355.94013
[14] Z. DRMA ˇC ANDK. VESELIC,New fast and accurate Jacobi SVD algorithm. I, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1322-1342. · Zbl 1221.65100
[15] A. DUMON, C. ALLERY,ANDA. AMMAR,Proper general decomposition (PGD) for the resolution of Navier-Stokes equations, J. Comput. Phys., 230 (2011), pp. 1387-1407. · Zbl 1391.76099
[16] F. GIRI ANDE.-W. BAI(eds.),Block-Oriented Nonlinear System Identification. Vol. 1, Springer, London 2010. · Zbl 1201.93004
[17] I. V. GOSEA ANDA. C. ANTOULAS,Data-driven model order reduction of quadratic-bilinear systems, Numer. Lin. Alg. Appl., 25 (2018), Art. e2200 (27 pages). · Zbl 1513.93013
[18] I. V. GOSEA ANDI. PONTESDUFF,Toward fitting structured nonlinear systems by means of dynamic mode decomposition, e-print arXiv:2003.06484, 2020.https://arxiv.org/abs/2003.06484.
[19] C. GRÄSSLE, M. HINZE, J. LANG,ANDS. ULLMANN,POD model order reduction with space-adapted snapshots for incompressible flows, Adv. Comput. Math., 45 (2019), pp. 2401-2428. · Zbl 1435.65157
[20] B. GUSTAVSEN ANDA. SEMLYEN,Rational approximation of frequency domain responses by vector fitting, IEEE Trans. Power Del., 14 (1999), pp. 1052-1061.
[21] P. C. HANSEN,The L-curve and its use in the numerical treatment of inverse problems, in Computational Inverse Problems in Electrocardiology, P. Johnston, ed., Advances in Computational Bioengineering, WIT Press, Ashurst, 2000, pp. 119-142.
[22] M. HEINKENSCHLOSS, D. C. SORENSEN,ANDK. SUN,Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci. Comput., 30 (2008), pp. 1038- · Zbl 1216.76015
[23] B. L. HO ANDR. E. KÁLMÁN,Effective construction of linear state-variable models from input/output functions, at-Automatisierungstechnik, 14 (1966), pp. 545-548. · Zbl 0145.12701
[24] X. JIN, S. CAI, H. LI,ANDG. E. KARNIADAKIS,NSFnets (Navier-Stokes Flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations, e-print arXiv:2003.06496, 2020. https://arxiv.org/abs/2003.06496.
[25] J.-N. JUANG ANDR. S. PAPPA,An eigensystem realization algorithm for modal parameter identification and model reduction, J. Guidance, Control, and Dyn., 8 (1985), pp. 620-627. · Zbl 0589.93008
[26] J. N. KUTZ, S. L. BRUNTON, B. W. BRUNTON,ANDJ. L. PROCTOR,Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM, Philadelphia, 2016. · Zbl 1365.65009
[27] S. LECLAINCHE ANDJ. M. VEGA,Higher order dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 882-925. · Zbl 1373.37169
[28] J. R. R. A. MARTINS ANDJ. T. HWANG,Review and unification of methods for computing derivatives of multidisciplinary computational models, AIAA J., 51 (2013), pp. 2582-2599.
[29] A. J. MAYO ANDA. C. ANTOULAS,A framework for the solution of the generalized realization problem, Linear Algebra Appl., 425 (2007), pp. 634-662. · Zbl 1118.93029
[30] S. A. MCQUARRIE, C. HUANG,ANDK. WILLCOX,Data-driven reduced-order models via regularized operator inference for a single-injector combustion process, e-print arXiv:2008.02862, 2020. https://arxiv.org/abs/2008.02862.
[31] I. MEZI ´C,Analysis of fluid flows via spectral properties of the Koopman operator, Annu. Rev. Fluid Mech., 45 (2013), pp. 357-378. · Zbl 1359.76271
[32] Y. NAKATSUKASA, O. SÈTE,ANDL. N. TREFETHEN,The AAA algorithm for rational approximation, SIAM J. Sci. Comput., 40 (2018), pp. A1494-A1522. · Zbl 1390.41015
[33] N. NGUYEN, A. T. PATERA,ANDJ. PERAIRE,A best points interpolation method for efficient approximation of parametrized functions, Internat. J. Numer. Methods Engrg., 73 (2008), pp. 521-543. · Zbl 1163.65009
[34] B. PEHERSTORFER, S. GUGERCIN,ANDK. WILLCOX,Data-driven reduced model construction with time-domain Loewner models, SIAM J. Sci. Comput., 39 (2017), pp. A2152-A2178. · Zbl 1448.65087
[35] B. PEHERSTORFER ANDK. WILLCOX,Data-driven operator inference for nonintrusive projection-based model reduction, Comput. Methods Appl. Mech. Eng., 306 (2016), pp. 196-215. · Zbl 1436.93062
[36] J. L. PROCTOR, S. L. BRUNTON,ANDJ. N. KUTZ,Dynamic mode decomposition with control, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 142-161. · Zbl 1334.65199
[37] ,Generalizing Koopman theory to allow for inputs and control, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 909-930. · Zbl 1390.93226
[38] E. QIAN, B. KRAMER, B. PEHERSTORFER,ANDK. WILLCOX,Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical systems, Phys. D, 406 (2020), Art. 132401 (10 pages). · Zbl 1493.62512
[39] M. RAISSI,Deep hidden physics models: Deep learning of nonlinear partial differential equations, J. Machine Learning Research, 19 (2018), pp. 932-955. · Zbl 1439.68021
[40] M. RAISSI, P. PERDIKARIS,ANDG. E. KARNIADAKIS,Multistep neural networks for data-driven discovery of nonlinear dynamical systems, e-print arXiv:1801.01236, 2018. https://arxiv.org/abs/1801.01236
[41] M. RAISSI, P. PERDIKARIS,ANDG. E. KARNIADAKIS,Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. · Zbl 1415.68175
[42] S. S. RAVINDRAN,Reduced-order adaptive controllers for fluid flows using POD, J. Sci. Comput., 15 (2000), pp. 457-478. · Zbl 1048.76016
[43] P. J. SCHMID,Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656 (2010), pp. 5-28. · Zbl 1197.76091
[44] M. SCHOUKENS ANDK. TIELS,Identification of block-oriented nonlinear systems starting from linear approximations: A survey, Automatica, 85 (2017), pp. 272-292. · Zbl 1375.93038
[45] L. SIROVICH,Turbulence and the dynamics of coherent structures. I. Coherent structures, Quart. Appl. Math., 45 (1987), pp. 561-571. · Zbl 0676.76047
[46] G. STABILE, S. HIJAZI, A. MOLA, S. LORENZI,ANDG. ROZZA,POD-Galerkin reduced order methods for CFD using finite volume discretisation: vortex shedding around a circular cylinder, Commun. Appl. Indust. Math., 8 (2017), pp. 210-236. · Zbl 1383.35175
[47] G. STABILE ANDG. ROZZA,Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Computers & Fluids, 173 (2018), pp. 273-284. · Zbl 1410.76264
[48] J. H. TU, C. W. ROWLEY, D. M. LUCHTENBURG, S. L. BRUNTON,ANDJ. N. KUTZ,On dynamic mode decomposition: Theory and applications, J. Comput. Dyn., 1(2) (2014), pp. 391-421. · Zbl 1346.37064
[49] M. O. WILLIAMS, I. G. KEVREKIDIS,ANDC. W. ROWLEY,A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition, J. Nonlinear Sci., 25 (2015), pp. 1307-1346. · Zbl 1329.65310
[50] M. O. WILLIAMS, C. W. ROWLEY,ANDI. G. KEVREKIDIS,A kernel-based method for data-driven Koopman spectral analysis, J. Comput. Dyn., 2 (2015), pp. 247-265. · Zbl 1366.37144
[51] A. WILLS, T. B. SCHÖN, L. LJUNG,ANDB. NINNESS,Identification of Hammerstein-Wiener models, Automatica, 49 (2013), pp. 70-81. · Zbl 1257.93109
[52] S. YILDIZ, P. GOYAL, P. BENNER,ANDB. KARASOZEN,Data-driven learning of reduced-order dynamics for a parametrized shallow water equation, e-print arXiv:2007.14079, 2020. https://arxiv.org/abs/2007.14079.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.