×

A POD based extrapolation DG time stepping space-time FE method for parabolic problems. (English) Zbl 07922117

Summary: Based on the proper orthogonal decomposition technique, a new reduced-order discontinuous time stepping space-time finite element extrapolation iterative scheme is constructed to solve two-dimensional parabolic problems, which includes very few degrees of freedom but holds sufficiently high accuracy. A reduced space-time projection operator is defined, and its related error estimations are discussed. Then, the error estimate between the classical scheme solution and the reduced-basis scheme solution, and the a priori error estimate for the reduced-basis scheme are derived, respectively. These error estimates are analyzed by using the technique of combining Radau quadrature rule with finite element method, without considering any dual problems. The algorithm implementation of the reduced-order extrapolation iterative scheme is also provided. Finally, a numerical example is presented. The numerical results are consistent with theoretical ones. Moreover, it is shown that the new reduced-order extrapolation iterative scheme, by comparing to the standard approach, can reduce CPU time without loss of accuracy. Therefore, it is feasible and efficient for solving parabolic problems.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Kxx Parabolic equations and parabolic systems
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] Abbaszadeh, M.; Dehghan, M., A POD-based reduced-order Crank-Nicolson/fourth-order alternating direction implicit (ADI) finite difference scheme for solving the two-dimensional distributed-order Riesz space-fractional diffusion equation, Appl. Numer. Math., 158, 271-291, 2020 · Zbl 1452.65145
[2] Abbaszadeh, M.; Dehghan, M.; Khodadadian, A.; Noii, N.; Heitzinger, C.; Wick, T., A reduced-order variational multiscale interpolating element free Galerkin technique based on proper orthogonal decomposition for solving Navier-Stokes equations coupled with a heat transfer equation: nonstationary incompressible Boussinesq equations, J. Comput. Phys., 426, Article 109875 pp., 2021 · Zbl 07510038
[3] Akman, T., Error estimates for space-time discontinuous Galerkin formulation based on proper orthogonal decomposition, Appl. Anal., 96, 3, 461-482, 2017 · Zbl 1367.65137
[4] Alla, A.; Grässle, C.; Hinze, M., A posteriori snapshot location for POD in optimal control of linear parabolic equations, ESAIM: M2AN, 52, 1847-1873, 2018 · Zbl 1417.49040
[5] Baumann, M.; Benner, P.; Heiland, J., Space-time Galerkin POD with application in optimal control of semilinear partial differential equations, SIAM J. Sci. Comput., 40, 3, A1611-A1641, 2018 · Zbl 1392.35323
[6] Cao, Y.; Zhu, J.; Luo, Z.; Navon, I. M., Reduced-order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition, Comput. Math. Appl., 52, 1373-1386, 2006 · Zbl 1161.86002
[7] Choi, Y.; Carlberg, K., Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction, SIAM J. Sci. Comput., 41, 1, A26-A58, 2019 · Zbl 1405.65140
[8] Choi, Y.; Brown, P.; Arrighi, W.; Anderson, R.; Huynh, K., Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems, J. Comput. Phys., 424, Article 109845 pp., 2021 · Zbl 07508450
[9] Dal Santo, N.; Deparis, S.; Manzoni, A.; Quarteroni, A., An algebraic least squares reduced basis method for the solution of nonaffinely parametrized Stokes equations, Comput. Methods Appl. Mech. Eng., 344, 186-208, 2019 · Zbl 1440.76055
[10] Dehghan, M.; Abbaszadeh, M.; Khodadadian, A.; Heitzinger, C., Galerkin proper orthogonal decomposition-reduced order method (POD-ROM) for solving generalized Swift-Hohenberg equation, Int. J. Numer. Methods Heat Fluid Flow, 29, 8, 2642-2665, 2019
[11] Ding, C.; Deokar, R. R.; Ding, Y.; Li, G.; Cui, X.; Tamma, K. K.; Bordas, S. P.A., Model order reduction accelerated Monte Carlo stochastic isogeometric method for the analysis of structures with high-dimensional and independent material uncertainties, Comput. Methods Appl. Mech. Eng., 349, 266-284, 2019 · Zbl 1441.74295
[12] Fonn, E.; van Brummelen, H.; Kvamsdala, T.; Rasheed, A., Fast divergence-conforming reduced basis methods for steady Navier-Stokes flow, Comput. Methods Appl. Mech. Eng., 346, 486-512, 2019 · Zbl 1440.76059
[13] Fu, H. F.; Wang, H.; Wang, Z., POD/DEIM reduced-order modeling of time-fractional partial differential equations with applications in parameter identifification, J. Sci. Comput., 74, 220-243, 2018 · Zbl 1404.65140
[14] Fukunaga, K., Introduction to Statistical Recognition, 1990, Academic Press: Academic Press New York · Zbl 0711.62052
[15] Ghaffari, R.; Ghoreishi, F., Reduced collocation method for time-dependent parametrized partial differential equations, Bull. Iran. Math. Soc., 45, 1487-1504, 2019 · Zbl 1442.65291
[16] Ghaffari, R.; Ghoreishi, F., Reduced spline method based on a proper orthogonal decomposition technique for fractional sub-diffusion equations, Appl. Numer. Math., 137, 62-79, 2019 · Zbl 1407.65103
[17] Ghaffari, R.; Ghoreishi, F., Error analysis of the reduced RBF model based on POD method for time-fractional partial differential equations, Acta Appl. Math., 168, 33-55, 2020 · Zbl 1452.65273
[18] Gräßle, C.; Hinze, M., POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations, Adv. Comput. Math., 44, 1941-1978, 2018 · Zbl 1404.65264
[19] Grinberg, L.; Yakhot, A.; Karniadakis, G. E., Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition, Ann. Biomed. Eng., 37, 11, 2200-2217, 2009
[20] Jiang, G.; Liu, H.; Yang, K.; Gao, X., A fast reduced-order model for radial integral boundary element method based on proper orthogonal decomposition in nonlinear transient heat conduction problems, Comput. Methods Appl. Mech. Eng., 368, Article 113190 pp., 2020 · Zbl 1506.74012
[21] Jin, B.; Zhou, Z., An analysis of the Galerkin proper orthogonal decomposition for subdiffusion, ESAIM: Math. Model. Numer. Anal., 51, 1, 89-113, 2016 · Zbl 1365.65224
[22] John, V.; Moreau, B.; Novo, J., Error analysis of a SUPG-stabilized POD-ROM method for convection-diffusion-reaction equations, Comput. Math. Appl., 122, 48-60, 2022 · Zbl 1524.65553
[23] Jolliffe, I., Principal Component Analysis, 2002, Springer-Verlag: Springer-Verlag Berlin · Zbl 1011.62064
[24] Karakashian, O.; Makridakis, C., A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method, Math. Comput., 67, 479-499, 1998 · Zbl 0896.65068
[25] Karasözen, B.; Uzunca, M., Energy preserving model order reduction of the nonlinear Schrödinger equation, Adv. Comput. Math., 44, 1769-1796, 2018 · Zbl 1404.65310
[26] Karsten, U.; Patera, A., An improved error bound for reduced basis approximation of linear parabolic problems, Math. Comput., 83, 288, 1599-1615, 2014 · Zbl 1320.65129
[27] Kostova-Vassilevska, T.; Oxberry, G. M., Model reduction of dynamical systems by proper orthogonal decomposition: error bounds and comparison of methods using snapshots from the solution and the time derivatives, J. Comput. Appl. Math., 330, 553-573, 2018 · Zbl 1376.65099
[28] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 1, 117-148, 2001 · Zbl 1005.65112
[29] Li, H.; Song, Z.; Zhang, F., A reduced-order modified finite difference method preserving unconditional energy-stability for the Allen-Cahn equation, Numer. Methods Partial Differ. Equ., 37, 1869-1885, 2021 · Zbl 07776049
[30] Li, H.; Wang, D.; Song, Z.; Zhang, F., Numerical analysis of an unconditionally energy-stable reduced-order finite element method for the Allen-Cahn phase field model, Comput. Math. Appl., 96, 67-76, 2021 · Zbl 1524.65566
[31] Li, K.; Huang, T. Z.; Li, L.; Lanteri, S., A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media, J. Comput. Appl. Math., 336, 249-266, 2018 · Zbl 1386.78021
[32] Luo, Z., A POD-based reduced-order TSCFE extrapolation iterative format for two-dimensional heat equations, Bound. Value Probl., 59, 2015, 2015 · Zbl 1411.74060
[33] Luo, Z., The reduced-order extrapolating method about the Crank-Nicolson finite element solution coefficient vectors for parabolic type equation, Mathematics, 8, 1-11, 2020
[34] Luo, Z.; Chen, G., Proper Orthogonal Decomposition Methods for Partial Differential Equations, 2018, Elsevier: Elsevier Amsterdam
[35] Luo, Z.; Jin, S., A reduced-order extrapolated Crank-Nicolson collocation spectral method based on POD for the 2D viscoelastic wave equations, Numer. Methods Partial Differ. Equ., 36, 49-65, 2020 · Zbl 1457.65146
[36] Luo, Z.; Ren, H., A reduced-order extrapolated finite difference iterative method for the Riemann-Liouville tempered fractional derivative equation, Appl. Numer. Math., 157, 307-314, 2020 · Zbl 1446.65073
[37] Luo, Z.; Chen, J.; Navon, I. M.; Yang, X., Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations, SIAM J. Numer. Anal., 47, 1, 1-19, 2009 · Zbl 1391.76351
[38] Luo, Z.; Teng, F.; Chen, J., A POD-based reduced-order Crank-Nicolson finite volume element extrapolating algorithm for 2D Sobolev equations, Math. Comput. Simul., 146, 118-133, 2018 · Zbl 1484.65193
[39] Luo, Z.; Teng, F.; Xia, H., A reduced-order extrapolated Crank-Nicolson finite spectral element method based on POD for the 2D non-stationary Boussinesq equations, J. Math. Anal. Appl., 471, 1-2, 564-583, 2019 · Zbl 1407.65218
[40] Ly, H. V.; Tran, H. T., Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor, Q. Appl. Math., 60, 4, 631-656, 2002 · Zbl 1146.76631
[41] Shen, J.; Singler, J. R.; Zhang, Y., HDG-POD reduced order model of the heat equation, J. Comput. Appl. Math., 362, 663-679, 2019 · Zbl 1418.65116
[42] Song, J. P.; Rui, H. X., A reduced-order characteristic finite element method based on POD for optimal control problem governed by convection-diffusion equation, Comput. Methods Appl. Mech. Eng., 391, Article 114538 pp., 2022 · Zbl 1507.65190
[43] Stabile, G.; Rozza, G., Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Comput. Fluids, 173, 273-284, 2018 · Zbl 1410.76264
[44] Teng, F.; Luo, Z., A reduced-order extrapolated approach to solution coefficient vectors in the Crank-Nicolson finite element method for the uniform transmission line equation, J. Math. Anal. Appl., 493, 1-13, 2021 · Zbl 1452.65250
[45] Teng, F.; Luo, Z.; Yang, J., A reduced-order extrapolated natural boundary element method based on POD for the parabolic equation in the 2D unbounded domain, Comput. Appl. Math., 38, 102, 102, 2019 · Zbl 1438.65309
[46] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems, 1997, Springer-Verlag: Springer-Verlag New York · Zbl 0884.65097
[47] Urban, K.; Patera, A., An improved error bound for reduced basis approximation of linear parabolic problems, Math. Comput., 83, 288, 1599-1615, 2014 · Zbl 1320.65129
[48] Wu, Z.; Zhang, Z., An iterative algorithm for POD basis adaptation in solving parametric convection-diffusion equations, Comput. Methods Appl. Mech. Eng., 391, Article 114498 pp., 2022 · Zbl 1507.65192
[49] Yang, J.; Luo, Z., Proper orthogonal decomposition reduced-order extrapolation continuous space-time finite element method for the two-dimensional unsteady Stokes equation, J. Math. Anal. Appl., 475, 123-138, 2019 · Zbl 1433.65230
[50] Yano, M., A space-time Petrov-Galerkin certified reduced basis method: application to the Boussinesq equations, SIAM J. Sci. Comput., 36, 1, A232-A266, 2014 · Zbl 1288.35275
[51] Yano, M.; Patera, A. T.; Urban, K., A space-time hp-interpolation-based certified reduced basis method for Burgers equation, Math. Models Methods Appl. Sci., 24, 09, 1903-1935, 2014 · Zbl 1295.65098
[52] Zhang, S. Y.; Nie, Y. F., A POD-based fast algorithm for the nonlocal unsteady problems, Int. J. Numer. Anal. Model., 17, 6, 858-871, 2020 · Zbl 1482.65190
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.