×

Solving linear parabolic rough partial differential equations. (English) Zbl 1442.65303

Summary: We study linear rough partial differential equations in the setting of P. K. Friz and M. Hairer [A course on rough paths. With an introduction to regularity structures. Cham: Springer (2014; Zbl 1327.60013), Chapter 12]. More precisely, we consider a linear parabolic partial differential equation driven by a deterministic rough path W of Hölder regularity \(\alpha\) with \(1 / 3 < \alpha \leq 1 / 2\). Based on a stochastic representation of the solution of the rough partial differential equation, we propose a regression Monte Carlo algorithm for spatio-temporal approximation of the solution. We provide a full convergence analysis of the proposed approximation method which essentially relies on the new bounds for the higher order derivatives of the solution in space. Finally, we present a simulation study showing the applicability of the proposed algorithm.

MSC:

65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65C30 Numerical solutions to stochastic differential and integral equations
35R60 PDEs with randomness, stochastic partial differential equations

Citations:

Zbl 1327.60013

References:

[1] Amann, Herbert, Ordinary Differential Equations: An Introduction to Nonlinear Analysis, vol. 13 (1990), Walter de Gruyter · Zbl 0708.34002
[2] Anker, Felix; Bayer, Christian; Eigel, Martin; Ladkau, Marcel; Neumann, Johannes; Schoenmakers, John, SDE based regression for linear random PDEs, SIAM J. Sci. Comput., 39, 3, A1168-A1200 (2017) · Zbl 1372.65012
[3] Baudoin, Fabrice, An Introduction to the Geometry of Stochastic Flows (2004), World Scientific · Zbl 1085.60002
[4] Baumann, Manuel; Benner, Peter; Heiland, Jan, Space-time Galerkin POD with application in optimal control of semi-linear parabolic partial differential equations (2016), preprint · Zbl 1392.35323
[5] Bayer, Christian; Friz, Peter K.; Riedel, Sebastian; Schoenmakers, John, From rough path estimates to multilevel Monte Carlo, SIAM J. Numer. Anal., 54, 3, 1449-1483 (2016) · Zbl 1343.60097
[6] Bayer, Christian; Horst, Ulrich; Qiu, Jinniao, A functional limit theorem for limit order books with state dependent price dynamics, Ann. Appl. Probab., 27, 5, 2753-2806 (2017), 10 · Zbl 1379.60036
[7] Benner, Peter; Redmann, Martin, Model reduction for stochastic systems, Stoch. Partial Differ. Equ. Anal. Comput., 3, 3, 291-338 (2015) · Zbl 1331.65017
[8] Caruana, Michael; Friz, Peter K.; Oberhauser, Harald, A (rough) pathwise approach to a class of non-linear stochastic partial differential equations, Ann. Inst. Henri Poincaré (C), Anal. Non Linéaire, 28, 1, 27-46 (2011) · Zbl 1219.60061
[9] Cass, Thomas; Litterer, Christian; Lyons, Terry, Integrability and tail estimates for Gaussian rough differential equations, Ann. Probab., 41, 4, 3026-3050 (2013) · Zbl 1278.60091
[10] Deya, Aurélien; Gubinelli, Massimiliano; Hofmanova, Martina; Tindel, Samy, A priori estimates for rough PDEs with application to rough conservation laws (2016), preprint · Zbl 1411.60094
[11] Deya, Aurélien; Gubinelli, Massimiliano; Tindel, Samy, Non-linear rough heat equations, Probab. Theory Relat. Fields, 153, 1-2, 97-147 (2012) · Zbl 1255.60106
[12] Deya, Aurélien; Neuenkirch, Andreas; Tindel, Samy, A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion, Ann. Inst. Henri Poincaré Probab. Stat., 48, 2, 518-550 (2012) · Zbl 1260.60135
[13] Diehl, Joscha; Friz, Peter; Stannat, Wilhelm, Stochastic partial differential equations: a rough paths view on weak solutions via Feynman-Kac, Ann. Fac. Sci. Toulouse Sér. 6, 26, 4, 911-947 (2017) · Zbl 1392.35335
[14] Diehl, Joscha; Oberhauser, Harald; Riedel, Sebastian, A Lévy area between Brownian motion and rough paths with applications to robust nonlinear filtering and rough partial differential equations, Stoch. Process. Appl., 125, 161-181 (2015) · Zbl 1304.60065
[15] Friz, Peter; Hairer, Martin, A Course on Rough Paths (2014), Springer · Zbl 1327.60013
[16] Friz, Peter; Oberhauser, Harald, Rough path limits of the Wong-Zakai type with a modified drift term, J. Funct. Anal., 256, 10, 3236-3256 (2009) · Zbl 1169.60011
[17] Friz, Peter; Riedel, Sebastian, Integrability of (non-)linear rough differential equations and integrals, Stoch. Anal. Appl., 31, 2, 336-358 (2013) · Zbl 1274.60173
[18] Friz, Peter K.; Gassiat, Paul; Lions, Pierre-Louis; Souganidis, Panagiotis E., Eikonal equations and pathwise solutions to fully non-linear SPDEs, Stoch. Partial Differ. Equ., Anal. Computat., 5, 2, 256-277 (2017) · Zbl 1377.35293
[19] Friz, Peter K.; Victoir, Nicolas B., Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge Studies in Advanced Mathematics, vol. 120 (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1193.60053
[20] Friz, Peter K.; Zhang, Huilin, Differential equations driven by rough paths with jumps, J. Differ. Equ., 264, 10, 6226-6301 (2018) · Zbl 1432.60098
[21] Györfi, László; Kohler, Michael; Krzyżak, Adam; Walk, Harro, A Distribution-Free Theory of Nonparametric Regression, Springer Series in Statistics (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1021.62024
[22] Hairer, Martin, Solving the KPZ equation, Ann. Math., 178, 2, 559-664 (2013) · Zbl 1281.60060
[23] Han, Jiequn; Jentzen, Arnulf; Weinan, E., Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci., 115, 34, 8505-8510 (2018) · Zbl 1416.35137
[24] Kotelenez, Peter, Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations, vol. 58 (2007), Springer Science & Business Media · Zbl 1159.60004
[25] Kruse, Raphael, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Lecture Notes in Mathematics, vol. 2093 (2014), Springer · Zbl 1285.60002
[26] Lyons, Terry, Rough paths, signatures and the modelling of functions on streams (2014), preprint · Zbl 1373.93158
[27] Lyons, Terry J., Differential equations driven by rough signals, Rev. Mat. Iberoam., 14, 2, 215-310 (1998) · Zbl 0923.34056
[28] Milstein, G. N.; Tretyakov, M. V., Stochastic Numerics for Mathematical Physics, Scientific Computation (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1085.60004
[29] Milstein, G. N.; Tretyakov, M. V., Solving the Dirichlet problem for Navier-Stokes equations by probabilistic approach, BIT Numer. Math., 52, 1, 141-153 (2012) · Zbl 1387.35460
[30] Pardoux, Étienne, Filtrage non linéaire et équations aux dérivées partielles stochastiques associées, (Ecole d’Eté de Probabilités de Saint-Flour XIX—1989 (1991), Springer), 68-163
[31] Strichartz, Robert S., The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., 72, 2, 320-345 (1987) · Zbl 0623.34058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.