×

The supersymmetric effective field theory of inflation. (English) Zbl 1377.83152

Summary: We construct the supersymmetric effective field theory of inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to \(f_{NL}^{\mathrm{equil., orthog.}} \sim 1\) or, for particular operators, even \(\ll 1\). The non-degenerate contribution from modes of order \(H\) is estimated to be very small.

MSC:

83F05 Relativistic cosmology
81T60 Supersymmetric field theories in quantum mechanics
85A40 Astrophysical cosmology
83E50 Supergravity
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
81R40 Symmetry breaking in quantum theory

References:

[1] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP03 (2008) 014 [arXiv:0709.0293] [INSPIRE]. · doi:10.1088/1126-6708/2008/03/014
[2] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr., Princeton U.S.A., (1992) [INSPIRE].
[3] S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev.177 (1969) 2239 [INSPIRE].
[4] C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev.177 (1969) 2247 [INSPIRE].
[5] N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys.305 (2003) 96 [hep-th/0210184] [INSPIRE]. · Zbl 1022.81035 · doi:10.1016/S0003-4916(03)00068-X
[6] L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, JHEP04 (2012) 024 [arXiv:1009.2093] [INSPIRE]. · doi:10.1007/JHEP04(2012)024
[7] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, Limits on non-Gaussianities from WMAP data, JCAP05 (2006) 004 [astro-ph/0509029] [INSPIRE].
[8] L. Senatore, K.M. Smith and M. Zaldarriaga, Non-Gaussianities in single field inflation and their optimal limits from the WMAP 5-year data, JCAP01 (2010) 028 [arXiv:0905.3746] [INSPIRE]. · doi:10.1088/1475-7516/2010/01/028
[9] S.R. Behbahani, M. Mirbabayi, L. Senatore and K.M. Smith, New natural shapes of non-Gaussianity from high-derivative interactions and their optimal limits from WMAP 9-year data, JCAP11 (2014) 035 [arXiv:1407.7042] [INSPIRE]. · doi:10.1088/1475-7516/2014/11/035
[10] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys.594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
[11] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological non-linearities as an effective fluid, JCAP07 (2012) 051 [arXiv:1004.2488] [INSPIRE]. · doi:10.1088/1475-7516/2012/07/051
[12] J.J.M. Carrasco, M.P. Hertzberg and L. Senatore, The effective field theory of cosmological large scale structures, JHEP09 (2012) 082 [arXiv:1206.2926] [INSPIRE]. · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[13] R.A. Porto, L. Senatore and M. Zaldarriaga, The Lagrangian-space effective field theory of large scale structures, JCAP05 (2014) 022 [arXiv:1311.2168] [INSPIRE]. · doi:10.1088/1475-7516/2014/05/022
[14] L. Senatore and M. Zaldarriaga, The IR-resummed effective field theory of large scale structures, JCAP02 (2015) 013 [arXiv:1404.5954] [INSPIRE]. · doi:10.1088/1475-7516/2015/02/013
[15] T. Baldauf, M. Mirbabayi, M. Simonović and M. Zaldarriaga, LSS constraints with controlled theoretical uncertainties, arXiv:1602.00674 [INSPIRE].
[16] S. Deser and B. Zumino, Broken supersymmetry and supergravity, Phys. Rev. Lett.38 (1977) 1433 [INSPIRE]. · doi:10.1103/PhysRevLett.38.1433
[17] A.A. Kapustnikov, Nonlinear realization of Einsteinian supergravity, Theor. Math. Phys.47 (1981) 406 [INSPIRE]. · doi:10.1007/BF01086392
[18] E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter supergravity, Phys. Rev.D 92 (2015) 085040 [Erratum ibid.D 93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].
[19] R. Kallosh, Matter-coupled de Sitter supergravity, Theor. Math. Phys.187 (2016) 695 [arXiv:1509.02136] [INSPIRE]. · Zbl 1346.83062 · doi:10.1134/S0040577916050068
[20] R. Kallosh and T. Wrase, De Sitter supergravity model building, Phys. Rev.D 92 (2015) 105010 [arXiv:1509.02137] [INSPIRE].
[21] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev.D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].
[22] E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of nilpotent supergravity, JHEP09 (2015) 217 [arXiv:1507.07842] [INSPIRE]. · Zbl 1388.83793 · doi:10.1007/JHEP09(2015)217
[23] S. Ferrara, M. Porrati and A. Sagnotti, Scale invariant Volkov-Akulov supergravity, Phys. Lett.B 749 (2015) 589 [arXiv:1508.02939] [INSPIRE]. · Zbl 1364.83060 · doi:10.1016/j.physletb.2015.08.066
[24] J.J.M. Carrasco, R. Kallosh and A. Linde, Minimal supergravity inflation, Phys. Rev.D 93 (2016) 061301 [arXiv:1512.00546] [INSPIRE].
[25] E. Bergshoeff, D. Freedman, R. Kallosh and A. Van Proeyen, Construction of the de Sitter supergravity, in About various kinds of interactions: workshop in honour of professor Philippe Spindel, Mons Belgium, 4-5 June 2015 [arXiv:1602.01678] [INSPIRE].
[26] R. Kallosh, A. Linde and T. Wrase, Coupling the inflationary sector to matter, JHEP04 (2016) 027 [arXiv:1602.07818] [INSPIRE]. · Zbl 1388.83835 · doi:10.1007/JHEP04(2016)027
[27] R. Kallosh and A. Linde, Cosmological attractors and asymptotic freedom of the inflaton field, JCAP06 (2016) 047 [arXiv:1604.00444] [INSPIRE]. · doi:10.1088/1475-7516/2016/06/047
[28] S. Ferrara, A. Kehagias and A. Sagnotti, Cosmology and supergravity, Int. J. Mod. Phys.A 31 (2016) 1630044 [arXiv:1605.04791] [INSPIRE]. · Zbl 1347.83003 · doi:10.1142/S0217751X16300441
[29] I. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops, Inflation from supergravity with gauged R-symmetry in de Sitter vacuum, Eur. Phys. J.C 76 (2016) 680 [arXiv:1608.02121] [INSPIRE]. · doi:10.1140/epjc/s10052-016-4539-1
[30] D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
[31] X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP04 (2010) 027 [arXiv:0911.3380] [INSPIRE]. · doi:10.1088/1475-7516/2010/04/027
[32] Y. Kahn, D.A. Roberts and J. Thaler, The Goldstone and goldstino of supersymmetric inflation, JHEP10 (2015) 001 [arXiv:1504.05958] [INSPIRE]. · Zbl 1388.83925 · doi:10.1007/JHEP10(2015)001
[33] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett.B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE]. · Zbl 1370.83099 · doi:10.1016/j.physletb.2014.04.015
[34] R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields, JCAP01 (2015) 025 [arXiv:1408.5950] [INSPIRE]. · doi:10.1088/1475-7516/2015/01/025
[35] G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP12 (2014) 172 [arXiv:1411.2605] [INSPIRE]. · Zbl 1333.83227 · doi:10.1007/JHEP12(2014)172
[36] E.A. Ivanov and A.A. Kapustnikov, Geometry of spontaneously broken local N = 1 supersymmetry in superspace, Nucl. Phys.B 333 (1990) 439 [INSPIRE]. · doi:10.1016/0550-3213(90)90046-G
[37] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge Univ. Press, Cambridge U.K., (2012). · Zbl 1245.83001
[38] D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett.46B (1973) 109 [INSPIRE]. · doi:10.1016/0370-2693(73)90490-5
[39] M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett.41 (1978) 451 [INSPIRE]. · doi:10.1103/PhysRevLett.41.451
[40] Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP09 (2009) 066 [arXiv:0907.2441] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/066
[41] P.K. Townsend, Cosmological constant in supergravity, Phys. Rev.D 15 (1977) 2802 [INSPIRE].
[42] N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys.B 709 (2005) 3 [hep-ph/0409232] [INSPIRE]. · Zbl 1160.81460
[43] T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP08 (2012) 141 [arXiv:1205.1115] [INSPIRE]. · Zbl 1397.81356 · doi:10.1007/JHEP08(2012)141
[44] A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, JHEP06 (2015) 155 [arXiv:1501.03845] [INSPIRE]. · Zbl 1388.83042 · doi:10.1007/JHEP06(2015)155
[45] L.V. Delacretaz, T. Noumi and L. Senatore, Boost breaking in the EFT of inflation, JCAP02 (2017) 034 [arXiv:1512.04100] [INSPIRE]. · Zbl 1515.83330 · doi:10.1088/1475-7516/2017/02/034
[46] S.R. Behbahani, A. Dymarsky, M. Mirbabayi and L. Senatore, (Small) resonant non-Gaussianities: signatures of a discrete shift symmetry in the effective field theory of inflation, JCAP12 (2012) 036 [arXiv:1111.3373] [INSPIRE].
[47] R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive interactions: heavy particles and non-Gaussianity, arXiv:1606.00513 [INSPIRE]. · Zbl 1515.83348
[48] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE]. · doi:10.1088/1126-6708/2006/10/014
[49] L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP12 (2010) 008 [arXiv:0912.2734] [INSPIRE]. · Zbl 1294.83099 · doi:10.1007/JHEP12(2010)008
[50] L. Senatore and M. Zaldarriaga, On loops in inflation II: IR effects in single clock inflation, JHEP01 (2013) 109 [arXiv:1203.6354] [INSPIRE]. · doi:10.1007/JHEP01(2013)109
[51] G.L. Pimentel, L. Senatore and M. Zaldarriaga, On loops in inflation III: time independence of ζ in single clock inflation, JHEP07 (2012) 166 [arXiv:1203.6651] [INSPIRE]. · doi:10.1007/JHEP07(2012)166
[52] L. Senatore and M. Zaldarriaga, The constancy of ζ in single-clock inflation at all loops, JHEP09 (2013) 148 [arXiv:1210.6048] [INSPIRE]. · doi:10.1007/JHEP09(2013)148
[53] K.M. Smith, L. Senatore and M. Zaldarriaga, Optimal analysis of the CMB trispectrum, arXiv:1502.00635 [INSPIRE].
[54] M. Alvarez et al., Testing inflation with large scale structure: connecting hopes with reality, arXiv:1412.4671 [INSPIRE].
[55] R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Gravitino production after inflation, Phys. Rev.D 61 (2000) 103503 [hep-th/9907124] [INSPIRE].
[56] G.F. Giudice, I. Tkachev and A. Riotto, Nonthermal production of dangerous relics in the early universe, JHEP08 (1999) 009 [hep-ph/9907510] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.