×

Salvage of too slow gravitinos. (English) Zbl 1521.83193

Summary: Gravitinos can inherit a non-relativistic dispersion relation while propagating in a background breaking both supersymmetry and Lorentz symmetry spontaneously. This is because the longitudinal mode velocity is controlled by the sound speed in the background. It was pointed out recently by E.W. Kolb et al. [“Catastrophic production of slow gravitinos”, Preprint, arXiv:2102.10113] that the production of gravitinos might diverge when this sound speed vanishes. We argue that in the framework of cosmological models with linearly spontaneously broken realised supersymmetry, where the physical fermions are combinations of the vacuum goldstino and the inflatino, the gravitino longitudinal mode has a relativistic dispersion relation and therefore avoids the catastrophic production. We illustrate this in some explicit examples.

MSC:

83E50 Supergravity
81V15 Weak interaction in quantum theory

References:

[1] P. Fayet and J. Iliopoulos, Spontaneously broken supergauge symmetries and Goldstone spinors, Phys. Lett. B51 (1974) 461 [INSPIRE].
[2] D.V. Volkov and V.A. Soroka, Higgs effect for Goldstone particles with spin 1/2, JETP Lett.18 (1973) 312 [Pisma Zh. Eksp. Teor. Fiz.18 (1973) 529] [INSPIRE]. · Zbl 0983.81111
[3] P. Fayet, Mixing between gravitational and weak interactions through the massive gravitino, Phys. Lett. B70 (1977) 461 [INSPIRE].
[4] S. Deser and B. Zumino, Broken supersymmetry and supergravity, Phys. Rev. Lett.38 (1977) 1433 [INSPIRE].
[5] E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant, Nucl. Phys. B147 (1979) 105 [INSPIRE].
[6] Benakli, K.; Oz, Y.; Policastro, G., The super-Higgs mechanism in fluids, JHEP, 02, 015 (2014) · doi:10.1007/JHEP02(2014)015
[7] Benakli, K.; Darmé, L.; Oz, Y., The slow gravitino, JHEP, 10, 121 (2014) · doi:10.1007/JHEP10(2014)121
[8] K. Benakli and L. Darmé, Off-trail SUSY, PoSPLANCK2015 (2015) 019 [arXiv:1511.02044] [INSPIRE].
[9] Kahn, Y.; Roberts, DA; Thaler, J., The Goldstone and goldstino of supersymmetric inflation, JHEP, 10, 001 (2015) · Zbl 1388.83925 · doi:10.1007/JHEP10(2015)001
[10] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev. D93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].
[11] A. Schenkel and C.F. Uhlemann, Quantization of the massive gravitino on FRW spacetimes, Phys. Rev. D85 (2012) 024011 [arXiv:1109.2951] [INSPIRE].
[12] R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Gravitino production after inflation, Phys. Rev. D61 (2000) 103503 [hep-th/9907124] [INSPIRE].
[13] G.F. Giudice, I. Tkachev and A. Riotto, Nonthermal production of dangerous relics in the early universe, JHEP08 (1999) 009 [hep-ph/9907510] [INSPIRE].
[14] G.F. Giudice, A. Riotto and I. Tkachev, Thermal and nonthermal production of gravitinos in the early universe, JHEP11 (1999) 036 [hep-ph/9911302] [INSPIRE].
[15] R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry, supergravity and cosmology, Class. Quant. Grav.17 (2000) 4269 [Erratum ibid.21 (2004) 5017] [hep-th/0006179] [INSPIRE]. · Zbl 1007.83041
[16] Nilles, HP; Peloso, M.; Sorbo, L., Coupled fields in external background with application to nonthermal production of gravitinos, JHEP, 04, 004 (2001) · doi:10.1088/1126-6708/2001/04/004
[17] H.P. Nilles, M. Peloso and L. Sorbo, Nonthermal production of gravitinos and inflatinos, Phys. Rev. Lett.87 (2001) 051302 [hep-ph/0102264] [INSPIRE].
[18] E.W. Kolb, A.J. Long and E. McDonough, Catastrophic production of slow gravitinos, arXiv:2102.10113 [INSPIRE].
[19] E.W. Kolb, A.J. Long and E. McDonough, Gravitino swampland conjecture, Phys. Rev. Lett.127 (2021) 131603 [arXiv:2103.10437] [INSPIRE].
[20] E. Dudas, M.A.G. Garcia, Y. Mambrini, K.A. Olive, M. Peloso and S. Verner, Slow and safe gravitinos, Phys. Rev. D103 (2021) 123519 [arXiv:2104.03749] [INSPIRE].
[21] Ema, Y.; Mukaida, K.; Nakayama, K.; Terada, T., Nonthermal gravitino production after large field inflation, JHEP, 11, 184 (2016) · Zbl 1390.83449 · doi:10.1007/JHEP11(2016)184
[22] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
[23] D.Z. Freedman, Supergravity with axial gauge invariance, Phys. Rev. D15 (1977) 1173 [INSPIRE].
[24] Antoniadis, I.; Chatrabhuti, A.; Isono, H.; Knoops, R., Inflation from supersymmetry breaking, Eur. Phys. J. C, 77, 724 (2017) · doi:10.1140/epjc/s10052-017-5302-y
[25] T. Terada, Minimal supergravity inflation without slow gravitino, Phys. Rev. D103 (2021) 125022 [arXiv:2104.05731] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.