×

Coarse graining pure states in AdS/CFT. (English) Zbl 07774635

Summary: We construct new Euclidean wormhole solutions in \(\mathrm{AdS}_{d+1}\) and discuss their role in UV-complete theories, without ensemble averaging. The geometries are interpreted as overlaps of GHZ-like entangled states, which arise naturally from coarse graining the density matrix of a pure state in the dual CFT. In several examples, including thin-shell collapsing black holes and pure black holes with an end-of-the-world brane behind the horizon, the coarse-graining map is found explicitly in CFT terms, and used to define a coarse-grained entropy that is equal to one quarter the area of a time-symmetric apparent horizon. Wormholes are used to derive the coarse-graining map and to study statistical properties of the quantum state. This reproduces aspects of the West Coast model of 2D gravity and the large-\(c\) ensemble of 3D gravity, including a Page curve, in a higher-dimensional context with generic matter fields.

MSC:

81-XX Quantum theory

References:

[1] Maldacena, JM; Maoz, L., Wormholes in AdS, JHEP, 02, 053 (2004) · doi:10.1088/1126-6708/2004/02/053
[2] Arkani-Hamed, N.; Orgera, J.; Polchinski, J., Euclidean wormholes in string theory, JHEP, 12, 018 (2007) · Zbl 1246.81199 · doi:10.1088/1126-6708/2007/12/018
[3] J.S. Cotler et al., Black Holes and Random Matrices, JHEP05 (2017) 118 [Erratum ibid.09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
[4] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
[5] Penington, G.; Shenker, SH; Stanford, D.; Yang, Z., Replica wormholes and the black hole interior, JHEP, 03, 205 (2022) · Zbl 1522.83227 · doi:10.1007/JHEP03(2022)205
[6] Afkhami-Jeddi, N.; Cohn, H.; Hartman, T.; Tajdini, A., Free partition functions and an averaged holographic duality, JHEP, 01, 130 (2021) · Zbl 1459.83030 · doi:10.1007/JHEP01(2021)130
[7] Maloney, A.; Witten, E., Averaging over Narain moduli space, JHEP, 10, 187 (2020) · Zbl 1456.83067 · doi:10.1007/JHEP10(2020)187
[8] Chandra, J.; Collier, S.; Hartman, T.; Maloney, A., Semiclassical 3D gravity as an average of large-c CFTs, JHEP, 12, 069 (2022) · Zbl 1536.83053 · doi:10.1007/JHEP12(2022)069
[9] Almheiri, A., Replica Wormholes and the Entropy of Hawking Radiation, JHEP, 05, 013 (2020) · Zbl 1437.83084 · doi:10.1007/JHEP05(2020)013
[10] D.M. Greenberger, M.A. Horne and A. Zeilinger, Going beyond bell’s theorem, in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Springer Netherlands (1989), pp. 69-72 [doi:10.1007/978-94-017-0849-4_10].
[11] P. Hayden, M. Headrick and A. Maloney, Holographic Mutual Information is Monogamous, Phys. Rev. D87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
[12] V. Balasubramanian et al., Multiboundary Wormholes and Holographic Entanglement, Class. Quant. Grav.31 (2014) 185015 [arXiv:1406.2663] [INSPIRE]. · Zbl 1300.81067
[13] Susskind, L., ER · Zbl 1429.81022 · doi:10.1002/prop.201500094
[14] Bao, N., The Holographic Entropy Cone, JHEP, 09, 130 (2015) · Zbl 1388.83177 · doi:10.1007/JHEP09(2015)130
[15] D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].
[16] Gross, DJ; Perry, MJ; Yaffe, LG, Instability of Flat Space at Finite Temperature, Phys. Rev. D, 25, 330 (1982) · Zbl 1267.83039 · doi:10.1103/PhysRevD.25.330
[17] D. Marolf and J.E. Santos, AdS Euclidean wormholes, Class. Quant. Grav.38 (2021) 224002 [arXiv:2101.08875] [INSPIRE]. · Zbl 1514.83054
[18] Cooper, S., Black hole microstate cosmology, JHEP, 07, 065 (2019) · Zbl 1418.83024 · doi:10.1007/JHEP07(2019)065
[19] Keranen, V., Gravitational collapse of thin shells: Time evolution of the holographic entanglement entropy, JHEP, 06, 126 (2015) · Zbl 1388.83278 · doi:10.1007/JHEP06(2015)126
[20] Anous, T.; Hartman, T.; Rovai, A.; Sonner, J., Black Hole Collapse in the · Zbl 1390.83170 · doi:10.1007/JHEP07(2016)123
[21] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110
[22] Hubeny, VE; Rangamani, M.; Takayanagi, T., A Covariant holographic entanglement entropy proposal, JHEP, 07, 062 (2007) · doi:10.1088/1126-6708/2007/07/062
[23] N. Engelhardt and A.C. Wall, Decoding the Apparent Horizon: Coarse-Grained Holographic Entropy, Phys. Rev. Lett.121 (2018) 211301 [arXiv:1706.02038] [INSPIRE].
[24] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
[25] Yang, Z.; Hayden, P.; Qi, X-L, Bidirectional holographic codes and sub-AdS locality, JHEP, 01, 175 (2016) · Zbl 1388.83147 · doi:10.1007/JHEP01(2016)175
[26] Hayden, P., Holographic duality from random tensor networks, JHEP, 11, 009 (2016) · Zbl 1390.83344 · doi:10.1007/JHEP11(2016)009
[27] Almheiri, A.; Dong, X.; Harlow, D., Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP, 04, 163 (2015) · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[28] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP, 06, 149 (2015) · Zbl 1388.81094 · doi:10.1007/JHEP06(2015)149
[29] Chandra, J.; Hartman, T., Toward random tensor networks and holographic codes in CFT, JHEP, 05, 109 (2023) · Zbl 07701924 · doi:10.1007/JHEP05(2023)109
[30] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090 (2013) · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[31] Barankov, R.; Polkovnikov, A., Microscopic diagonal entropy and its connection to basic thermodynamic relations, Annals Phys., 326, 486 (2011) · Zbl 1211.82023 · doi:10.1016/j.aop.2010.08.004
[32] D’Alessio, L.; Kafri, Y.; Polkovnikov, A.; Rigol, M., From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys., 65, 239 (2016) · doi:10.1080/00018732.2016.1198134
[33] S.R. Roy and D. Sarkar, Hologram of a pure state black hole, Phys. Rev. D92 (2015) 126003 [arXiv:1505.03895] [INSPIRE].
[34] Sonner, J.; Vielma, M., Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP, 11, 149 (2017) · Zbl 1383.81258 · doi:10.1007/JHEP11(2017)149
[35] Hunter-Jones, N.; Liu, J.; Zhou, Y., On thermalization in the SYK and supersymmetric SYK models, JHEP, 02, 142 (2018) · Zbl 1387.83062 · doi:10.1007/JHEP02(2018)142
[36] J. Pollack, M. Rozali, J. Sully and D. Wakeham, Eigenstate Thermalization and Disorder Averaging in Gravity, Phys. Rev. Lett.125 (2020) 021601 [arXiv:2002.02971] [INSPIRE].
[37] Marolf, D.; Wang, S.; Wang, Z., Probing phase transitions of holographic entanglement entropy with fixed area states, JHEP, 12, 084 (2020) · Zbl 1457.83060 · doi:10.1007/JHEP12(2020)084
[38] A. Altland et al., From operator statistics to wormholes, Phys. Rev. Res.3 (2021) 033259 [arXiv:2105.12129] [INSPIRE].
[39] P. Saad, S. Shenker and S. Yao, Comments on wormholes and factorization, arXiv:2107.13130 [INSPIRE].
[40] Freivogel, B.; Nikolakopoulou, D.; Rotundo, AF, Wormholes from Averaging over States, SciPost Phys., 14, 026 (2023) · Zbl 07901066 · doi:10.21468/SciPostPhys.14.3.026
[41] Cotler, J.; Jensen, K., A precision test of averaging in AdS/CFT, JHEP, 11, 070 (2022) · Zbl 1536.83056 · doi:10.1007/JHEP11(2022)070
[42] Engelhardt, N.; Wall, AC, Coarse Graining Holographic Black Holes, JHEP, 05, 160 (2019) · Zbl 1416.83049 · doi:10.1007/JHEP05(2019)160
[43] N. Engelhardt, G. Penington and A. Shahbazi-Moghaddam, A world without pythons would be so simple, Class. Quant. Grav.38 (2021) 234001 [arXiv:2102.07774] [INSPIRE]. · Zbl 1480.83076
[44] Brown, AR; Gharibyan, H.; Penington, G.; Susskind, L., The Python’s Lunch: geometric obstructions to decoding Hawking radiation, JHEP, 08, 121 (2020) · Zbl 1454.83046 · doi:10.1007/JHEP08(2020)121
[45] N. Engelhardt, G. Penington and A. Shahbazi-Moghaddam, Finding pythons in unexpected places, Class. Quant. Grav.39 (2022) 094002 [arXiv:2105.09316] [INSPIRE]. · Zbl 1495.83038
[46] R. Renner and J. Wang, The black hole information puzzle and the quantum de Finetti theorem, arXiv:2110.14653 [INSPIRE].
[47] Almheiri, A.; Lin, HW, The entanglement wedge of unknown couplings, JHEP, 08, 062 (2022) · Zbl 1522.83109 · doi:10.1007/JHEP08(2022)062
[48] Qi, X-L; Shangnan, Z.; Yang, Z., Holevo information and ensemble theory of gravity, JHEP, 02, 056 (2022) · Zbl 1522.81043 · doi:10.1007/JHEP02(2022)056
[49] Geng, H.; Karch, A., Massive islands, JHEP, 09, 121 (2020) · Zbl 1454.83113 · doi:10.1007/JHEP09(2020)121
[50] Geng, H., Information Transfer with a Gravitating Bath, SciPost Phys., 10, 103 (2021) · doi:10.21468/SciPostPhys.10.5.103
[51] Karch, A.; Randall, L., Locally localized gravity, JHEP, 05, 008 (2001) · Zbl 1047.81062 · doi:10.1088/1126-6708/2001/05/008
[52] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett.107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].
[53] Fujita, M.; Takayanagi, T.; Tonni, E., Aspects of AdS/BCFT, JHEP, 11, 043 (2011) · Zbl 1306.81152 · doi:10.1007/JHEP11(2011)043
[54] Hartman, T.; Maldacena, J., Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP, 05, 014 (2013) · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[55] I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS_2gravity, arXiv:1707.02325 [INSPIRE].
[56] H.Z. Chen et al., Quantum Extremal Islands Made Easy, Part I: Entanglement on the Brane, JHEP10 (2020) 166 [arXiv:2006.04851] [INSPIRE].
[57] H.Z. Chen et al., Quantum Extremal Islands Made Easy, Part II: Black Holes on the Brane, JHEP12 (2020) 025 [arXiv:2010.00018] [INSPIRE].
[58] Miyaji, M.; Takayanagi, T.; Ugajin, T., Spectrum of End of the World Branes in Holographic BCFTs, JHEP, 06, 023 (2021) · doi:10.1007/JHEP06(2021)023
[59] I. Akal et al., Holographic moving mirrors, Class. Quant. Grav.38 (2021) 224001 [arXiv:2106.11179] [INSPIRE]. · Zbl 1511.83021
[60] Suzuki, Y-K; Terashima, S., On the dynamics in the AdS/BCFT correspondence, JHEP, 09, 103 (2022) · Zbl 1531.83146 · doi:10.1007/JHEP09(2022)103
[61] Izumi, K., Brane dynamics of holographic BCFTs, JHEP, 10, 050 (2022) · Zbl 1534.81142 · doi:10.1007/JHEP10(2022)050
[62] Rozali, M., Information radiation in BCFT models of black holes, JHEP, 05, 004 (2020) · Zbl 1437.83117 · doi:10.1007/JHEP05(2020)004
[63] Deutsch, JM, Quantum statistical mechanics in a closed system, Phys. Rev. As, 43, 2046 (1991) · doi:10.1103/PhysRevA.43.2046
[64] M. Srednicki, Chaos and Quantum Thermalization, cond-mat/9403051 [doi:10.1103/PhysRevE.50.888] [INSPIRE].
[65] H. Verlinde, OPE and the BH information paradox, talk at Gravitational Emergence in AdS/CFT, BIRS, October 29, 2021, https://www.birs.ca/events/2021/5-day-workshops/21w5136/videos/watch/202110291052-Verlinde.html.
[66] Akers, C.; Penington, G., Quantum minimal surfaces from quantum error correction, SciPost Phys., 12, 157 (2022) · doi:10.21468/SciPostPhys.12.5.157
[67] Belin, A.; de Boer, J.; Liska, D., Non-Gaussianities in the statistical distribution of heavy OPE coefficients and wormholes, JHEP, 06, 116 (2022) · Zbl 1522.81452 · doi:10.1007/JHEP06(2022)116
[68] Penington, G., Entanglement Wedge Reconstruction and the Information Paradox, JHEP, 09, 002 (2020) · Zbl 1454.81039 · doi:10.1007/JHEP09(2020)002
[69] Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H., The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP, 12, 063 (2019) · Zbl 1431.83123 · doi:10.1007/JHEP12(2019)063
[70] Engelhardt, N.; Wall, AC, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP, 01, 073 (2015) · doi:10.1007/JHEP01(2015)073
[71] Dong, X.; Lewkowycz, A.; Rangamani, M., Deriving covariant holographic entanglement, JHEP, 11, 028 (2016) · Zbl 1390.83103 · doi:10.1007/JHEP11(2016)028
[72] R. Bousso, V. Chandrasekaran, P. Rath and A. Shahbazi-Moghaddam, Gravity dual of Connes cocycle flow, Phys. Rev. D102 (2020) 066008 [arXiv:2007.00230] [INSPIRE].
[73] N. Engelhardt and vA. Folkestad, Canonical purification of evaporating black holes, Phys. Rev. D105 (2022) 086010 [arXiv:2201.08395] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.